556 research outputs found

    Recent advances in the structural diversity of reaction centers

    Get PDF
    Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs

    Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control

    Get PDF
    Wind energy has been recognized as a clean energy source with significant potential for reducing carbon emissions. However, its inherent variability poses substantial challenges for power system operators due to its unpredictable nature. As a result, there is an increased dependence on conventional generation sources to uphold the power system balance, resulting in elevated operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative solutions that can reduce the burden on traditional generating units and optimize the utilization of reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration has emerged as a remedial approach to rectify power capacity shortages during grid operations, enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-based power systems. A real-time dynamic power dispatch strategy is developed for the automatic generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce reliance on conventional power plants and increase system security. The results obtained from this study emphasize the significant prospects associated with the fusion of EVs and traditional power plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale wind energy-based power systems

    Mapping genes with longitudinal phenotypes via Bayesian posterior probabilities

    Get PDF
    Most association studies focus on disease risk, with less attention paid to disease progression or severity. These phenotypes require longitudinal data. This paper presents a new method for analyzing longitudinal data to map genes in both population-based and family-based studies. Using simulated systolic blood pressure measurements obtained from Genetic Analysis Workshop 18, we cluster the phenotype data into trajectory subgroups. We then use the Bayesian posterior probability of being in the high subgroup as a quantitative trait in an association analysis with genotype data. This method maintains high power (\u3e80%) in locating genes known to affect the simulated phenotype for most specified significance levels (a). We believe that this method can be useful to aid in the discovery of genes that affect severity or progression of disease

    Long-range, Non-local Switching of Spin Textures in a Frustrated Antiferromagnet

    Full text link
    Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture then rotates. The collective excitations of complex spin textures have rarely been utilized in this context, even though they can in principle transport spin over much longer distances, using much lower power. In this study, we show that spin information can be transported and stored non-locally in the material Fex_xNbS2_2. We propose that collective modes leverage the strong magnetoelastic coupling in the system to achieve this, revealing a novel way to store spin information in complex magnetic systemsComment: 14 pages, 4 figures, supplement available on reques

    Protected areas: providing natural solutions to 21st century challenges

    Get PDF
    Protected areas remain a cornerstone of global conservation efforts. The double impacts of climate change and biodiversity loss are major threats to achieving the Millennium Development Goals, especially those relating to environmental sustainability, poverty alleviation and food and water security. The growing awareness of the planet’s vulnerability to human driven changes also provides an opportunity to re-emphasize the multiple values of natural ecosystems and the services that they provide. Protected areas, when integrated into landuse plans as part of larger and connected conservation networks, offer practical, tangible solutions to the problems of both species loss and adaptation to climate change. Natural habitats make a significant contribution to mitigation by storing and sequestering carbon in vegetation and soils, and to adaptation by maintaining essential ecosystem services which help societies to respond to, and cope with climate change and other environmental challenges. Many protected areas could be justified on socioeconomic grounds alone yet their multiple goods and services are largely unrecognized in national accounting. This paper argues that there is a convincing case for greater investment in expanded and better-connected protected area systems, under a range of governance and management regimes that are specifically designed to counter the threats of climate change, increased demand and altered patterns of resource use. The new agenda for protected areas requires greater inclusivity of a broader spectrum of actors and rights holders, with growing attention to landscapes and seascapes protected by indigenous peoples, local communities, private owners and other actors which complement conservation areas managed by state agencies. Greater attention also needs to be focused on ways to integrate and mainstream protected areas into sustainable development, including promotion of “green” infrastructure as a strategic part of responses to climate change

    Docking And Molecular Dynamic Of Microalgae Compounds As Potential Inhibitors Of Beta-Lactamase

    Get PDF
    Bacterial resistance is responsible for a wide variety of health problems, both in children and adults. The persistence of symptoms and infections are mainly treated with beta-lactam antibiotics. The increasing resistance to those antibiotics by bacterial pathogens generated the emergence of extended-spectrum beta-lactamases (ESBLs), an actual public health problem. This is due to rapid mutations of bacteria when exposed to antibiotics. In this case, beta-lactamases are enzymes used by bacteria to hydrolyze the beta-lactam rings present in the antibiotics. Therefore, it was necessary to explore novel molecules as potential beta-lactamases inhibitors to find antibacterial compounds against infection caused by ESBLs. A computational methodology based on molecular docking and molecular dynamic simulations was used to find new microalgae metabolites inhibitors of beta-lactamase. Six 3D beta-lactamase proteins were selected, and the molecular docking revealed that the metabolites belonging to the same structural families, such as phenylacridine (4-Ph), quercetin (Qn), and cryptophycin (Cryp), exhibit a better binding score and binding energy than commercial clinical medicine beta-lactamase inhibitors, such as clavulanic acid, sulbactam, and tazobactam. These results indicate that 4-Ph, Qn, and Cryp molecules, homologous from microalgae metabolites, could be used, likely as novel beta-lactamase inhibitors or as structural templates for new in-silico pharmaceutical designs, with the possibility of combatting beta-lactam resistanc

    Docking and Molecular Dynamic of Microalgae Compounds as Potential Inhibitors of Beta-Lactamase

    Get PDF
    Bacterial resistance is responsible for a wide variety of health problems, both in children and adults. The persistence of symptoms and infections are mainly treated with beta-lactam antibiotics. The increasing resistance to those antibiotics by bacterial pathogens generated the emergence of extended-spectrum beta-lactamases (ESBLs), an actual public health problem. This is due to rapid mutations of bacteria when exposed to antibiotics. In this case, beta-lactamases are enzymes used by bacteria to hydrolyze the beta-lactam rings present in the antibiotics. Therefore, it was necessary to explore novel molecules as potential beta-lactamases inhibitors to find antibacterial compounds against infection caused by ESBLs. A computational methodology based on molecular docking and molecular dynamic simulations was used to find new microalgae metabolites inhibitors of beta-lactamase. Six 3D beta-lactamase proteins were selected, and the molecular docking revealed that the metabolites belonging to the same structural families, such as phenylacridine (4-Ph), quercetin (Qn), and cryptophycin (Cryp), exhibit a better binding score and binding energy than commercial clinical medicine beta-lactamase inhibitors, such as clavulanic acid, sulbactam, and tazobactam. These results indicate that 4-Ph, Qn, and Cryp molecules, homologous from microalgae metabolites, could be used, likely as novel beta-lactamase inhibitors or as structural templates for new in-silico pharmaceutical designs, with the possibility of combatting beta-lactam resistanc

    Geodesic-based manifold learning for parameterization of triangular meshes

    Get PDF
    Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, BĂ©zier) a real surface which has been pointsampled -- To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample -- We use a dualdistance calculation point to / from surfaces, which discourages the forming of outliers and artifacts -- This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form -- The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesicbased dimensionality reduction methods: (a) graphapproximated geodesics (Isomap), or (b) PL orthogonal geodesic grids -- We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE) -- A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniformspeed parameterizations -- Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes -- Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful -- These initial guesses, in turn, produce efficient free form optimization processes with minimal errors -- Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reductio

    Ice XII in its second regime of metastability

    Full text link
    We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase[Lobban et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different conditions. Ice XII is produced here by compressing hexagonal ice I_h at T = 77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5 < T < 135 K. High resolution diffraction is carried out at T = 1.5 K and ambient pressure on ice XII and accurate structural properties are obtained from Rietveld refinement. At T = 140 and 160 K additionally ice III/IX is formed. The increasing amount of ice III/IX with increasing temperature gives an upper limit of T ~ 150 K for the successful formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review Letters
    • …
    corecore