564 research outputs found

    Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations

    Get PDF
    Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site. Recently we showed that coarse-grained molecular dynamics simulations, based on the most recent version of the Martini force field, can be used to predict protein/ligand binding sites and pathways, without requiring any a priori information, and offer a level of accuracy approaching all-atom simulations. Given the excellent computational efficiency of Martini, this opens the way to high-throughput drug screening based on dynamic docking pipelines. In this opinion article, we sketch the roadmap to achieve this goal

    Methods for control over learning individual trajectory

    Get PDF
    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects

    22q11.2 Deletion Syndrome. Impact of Genetics in the Treatment of Conotruncal Heart Defects

    Get PDF
    Congenital heart diseases represent one of the hallmarks of 22q11.2 deletion syndrome. In particular, conotruncal heart defects are the most frequent cardiac malformations and are often associated with other specific additional cardiovascular anomalies. These findings, together with extracardiac manifestations, may affect perioperative management and influence clinical and surgical outcome. Over the past decades, advances in genetic and clinical diagnosis and surgical treatment have led to increased survival of these patients and to progressive improvements in postoperative outcome. Several studies have investigated long-term follow-up and results of cardiac surgery in this syndrome. The aim of our review is to examine the current literature data regarding cardiac outcome and surgical prognosis of patients with 22q11.2 deletion syndrome. We thoroughly evaluate the most frequent conotruncal heart defects associated with this syndrome, such as tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries, aortic arch interruption, and truncus arteriosus, highlighting the impact of genetic aspects, comorbidities, and anatomical features on cardiac surgical treatment

    Protein-ligand binding with the coarse-grained Martini model

    Get PDF
    The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein–ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein–ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model

    Vibration issues in timber structures: A state-of-the-art review

    Get PDF
    The increasing use of timber structures worldwide has brought attention to the challenges posed by their lightweight nature, making them more prone to vibrations than more massive structures. Consequently, significant research efforts have been dedicated to understanding and mitigating vibrations in timber structures, while scientific committees strive to establish suitable design regulations. This study aims to classify and identify the main research themes related to timber structure vibrations and highlight future research needs and directions. A bibliometricbased selection process briefly introduces each research topic, presenting the latest findings and proposals for vibration design in timber structures. The paper emphasizes the key outcomes and significant contributions to understanding and addressing vibration issues in timber structures. These findings serve as valuable guidance for researchers, designers, and regulatory bodies involved in designing and assessing timber structures subjected to vibrations

    Dietary thiols: A potential supporting strategy against oxidative stress in heart failure and muscular damage during sports activity

    Get PDF
    Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a “natural cure” to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: Glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane

    Exercise, immune system, nutrition, respiratory and cardiovascular diseases during COVID-19: A complex combination

    Get PDF
    Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease
    corecore