559 research outputs found

    Galaxy rotation curves from General Relativity with Renormalization Group corrections

    Full text link
    We consider the application of quantum corrections computed using renormalization group arguments in the astrophysical domain and show that, for the most natural interpretation of the renormalization group scale parameter, a gravitational coupling parameter GG varying 10710^{-7} of its value across a galaxy (which is roughly a variation of 101210^{-12} per light-year) is sufficient to generate galaxy rotation curves in agreement with the observations. The quality of the resulting fit is similar to the Isothermal profile quality once both the shape of the rotation curve and the mass-to-light ratios are considered for evaluation. In order to perform the analysis, we use recent high quality data from nine regular disk galaxies. For the sake of comparison, the same set of data is modeled also for the Modified Newtonian Dynamics (MOND) and for the recently proposed Scalar Tensor Vector Gravity (STVG). At face value, the model based on quantum corrections clearly leads to better fits than these two alternative theories.Comment: 35 pages, 12 PDF figures. v4: Version accepted in JCAP. Improved comments on the galactic gas effects to our model, stressed the relevance of our MOND and STVG fits, slightly extended discussion on our perspectives and minor additional comments. Ref's added

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    Chaos and Rotating Black Holes with Halos

    Get PDF
    The occurrence of chaos for test particles moving around a slowly rotating black hole with a dipolar halo is studied using Poincar\'e sections. We find a novel effect, particles with angular momentum opposite to the black hole rotation have larger chaotic regions in phase space than particles initially moving in the same direction.Comment: 9 pages, 4 Postscript figures. Phys. Rev. D, in pres

    Geodesics around Weyl-Bach's Ring Solution

    Full text link
    We explore some of the gravitational features of a uniform ring both in the Newtonian potential theory and in General Relativity. We use a spacetime associated to a Weyl static solution of the vacuum Einstein's equations with ring like singularity. The Newtonian motion for a test particle in the gravitational field of the ring is studied and compared with the corresponding geodesic motion in the given spacetime. We have found a relativistic peculiar attraction: free falling particle geodesics are lead to the inner rim but never hit the ring.Comment: 8 figures, 14 pages. LaTeX w/ subfigure, graphic

    On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure

    Get PDF
    We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein Equations in terms of bars. We find that each multi-pole correspond to the Newtonian potential of a bar with linear density proportional to a Legendre Polynomial. We use this fact to find an integral representation of the γ\gamma function. These integral representations are used in the context of the inverse scattering method to find solutions associated to one or more rotating bodies each one with their own multi-polar structure.Comment: To be published in Classical and Quantum Gravit

    Radiation and String Atmosphere for Relativistic Stars

    Get PDF
    We extend the Vaidya radiating metric to include both a radiation field and a string fluid. Assuming diffusive transport for the string fluid, we find new analytic solutions of Einstein's field equations. Our new solutions represent an extention of Xanthopoulos superposition.Comment: To appear in Phys. Rev. D, Rapid Communicatio

    Exact General Relativistic Disks with Magnetic Fields

    Get PDF
    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bicak, Lynden-Bell and Katz [Phys. Rev. D47, 4334, 1993] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.Comment: 21 pages, 11 figures, uses package graphics, accepted in PR

    Exact General Relativistic Thick Disks

    Get PDF
    A method to construct exact general relativistic thick disks that is a simple generalization of the ``displace, cut and reflect'' method commonly used in Newtonian, as well as, in Einstein theory of gravitation is presented. This generalization consists in the addition of a new step in the above mentioned method. The new method can be pictured as a ``displace, cut, {\it fill} and reflect'' method. In the Newtonian case, the method is illustrated in some detail with the Kuzmin-Toomre disk. We obtain a thick disk with acceptable physical properties. In the relativistic case two solutions of the Weyl equations, the Weyl gamma metric (also known as Zipoy-Voorhees metric) and the Chazy-Curzon metric are used to construct thick disks. Also the Schwarzschild metric in isotropic coordinates is employed to construct another family of thick disks. In all the considered cases we have non trivial ranges of the involved parameter that yield thick disks in which all the energy conditions are satisfied.Comment: 11 pages, RevTex, 9 eps figs. Accepted for publication in PR

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques
    corecore