53 research outputs found

    Amelogenin Nanoparticles in Suspension: Deviations from Spherical Shape and pH-Dependent Aggregation

    Get PDF
    It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel

    Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor

    Get PDF
    Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Non-contact universal sample presentation for room temperature macromolecular crystallography using acoustic levitation

    Get PDF
    Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources

    Application of multi-temporal MERIS-FR and ASAR-WS data for large scale vegetation monitoring in the West African Sahel zone

    Full text link
    This paper presents results achieved within the AQUIFER project from applying a remote sensing approach for regional scale vegetation monitoring in the Sahel. The present study is focussing on vegetation monitoring over parts of Niger, Nigeria and Mali, three countries sharing the common Iullemeden Aquifer System. This Aquifer system is affected by progressive over-extraction, water quality degradation, human induced pollution, associated with soil degradation, and the impacts of variability and climatic change. The specific vegetation types in these arid regions are good indicators for environmental changes. In many parts of the Sahel there are no continuous ground truth measurements available to allow statements about the extension of vegetation. Earth Observation data may provide the only approach to detect and analyse long-term changes. This study demonstrates the performance and suitability of ENVISAT MERIS-FR and ASAR-WS data for this purpose. The application of radar capabilities to detect the moisture content and optical information for the phenological state monitoring of the vegetation is demonstrated. Land cover classification maps of four different points intime within one growth period were generated using a rule based (object oriented) classification approach. Additionally, the changes between the four different dates as well as the seasonal vegetation dynamics were analysed

    Optical Properties of Individual Silicon Nanowires for Photonic Devices

    No full text
    Silicon is a high refractive index material. Consequently, silicon nanowires (SiNWs) with diameters on the order of the wavelengths of visible light show strong resonant field enhancement of the incident light, so this type of nanomaterial is a good candidate for all kinds of photonic devices. Surprisingly enough, a thorough experimental and theoretical analysis of both the polarization dependence of the absorption and the scattering behavior of individual SiNWs under defined illumination has not been presented yet. Here, the present paper will contribute by showing optical properties such as scattering and absorption of individual SiNWs experimentally in an optical microscope using bright- and dark-field illumination modes as well as in analytical Mie calculations. Experimental and calculation results are in good agreement, and both reveal a strong correlation of the optical properties of individual SINWs to their diameters. This finding supports the notion that SiNWs can be used in photonic applications such as for photovoltaics or optical sensors

    Aspects of the Levi form

    No full text
    We discuss various analytical and geometrical aspects of the Levi form, which is associated with a CR manifold having any CR dimension and any CR codimension

    Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique

    No full text
    One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW

    Index matching at the nanoscale: light scattering by core-shell Si/SiOx nanowires

    No full text
    Silicon nanowires (SiNWs) show strong resonant wavelength enhancement in terms of absorption as well as scattering of light. However, in most optoelectronic device concepts the SiNWs should be surrounded by a contact layer. Ideally, such a layer can also act as an index matching layer which could nearly halve the strong reflectance of light by silicon. Our results show that this reduction can be overcome at the nanometer scale, i.e. SiNWs embedded in a silica (SiOx) layer can not only maintain their high scattering cross sections but also their strong polarization dependent scattering. Such effects can be useful for light harvesting or optoelectronic applications. Moreover, we show that it is possible to optically determine the diameters of the embedded nanoscale silicon (Si) cores
    • 

    corecore