3,301 research outputs found

    Microwave emission from spinning dust in circumstellar disks

    Full text link
    In the high density environments of circumstellar disks dust grains are expected to grow to large sizes by coagulation. Somewhat unexpectedly, recent near-IR observations of PAH features from disks around Herbig Ae/Be stars demonstrate that substantial amount of dust mass in these disks (up to several tens of per cent of the total carbon content) can be locked up in particles with sizes ranging from several to tens of nanometers. We investigate the possibility of detecting the electric dipole emission produced by these nanoparticles as they spin at thermal rates (tens of GHz) in cold gas. We show that such emission peaks in the microwave range and dominates over the thermal disk emission at \nu 5 % of the total carbon abundance is locked up in nanoparticles. We test the sensitivity of this prediction to various stellar and disk parameters and show that if the potential contamination of the spinning dust component by the free-free and/or synchrotron emission can be removed, then the best chances of detecting this emission would be in disks with small opacity, having SEDs with steep sub-mm slopes (which minimizes thermal disk emission at GHz frequencies). Detection of the spinning dust emission would provide important evidence for the existence, properties, and origin of the population of small dust particles in protoplanetary disks, with possible ramifications for planet formation.Comment: 9 pages, 3 figures, submitted to Ap

    Front dynamics during diffusion-limited corrosion of ramified electrodeposits

    Get PDF
    Experiments on the diffusion-limited corrosion of porous copper clusters in thin gap cells containing cupric chloride are reported. By carefully comparing corrosion front velocities and concentration profiles obtained by phase-shift interferometry with theoretical predictions, it is demonstrated that this process is well-described by a one-dimensional mean-field model for the generic reaction A + B (static) -> C (inert) with only diffusing reactant (cupric chloride) and one static reactant (copper) reacting to produce an inert product (cuprous chloride). The interpretation of the experiments is aided by a mathematical analysis of the model equations which allows the reaction-order and the transference number of the diffusing species to be inferred. Physical arguments are given to explain the surprising relevance of the one-dimensional mean-field model in spite of the complex (fractal) structure of the copper clusters.Comment: 26 pages, 10 figures, submitted to J. Phys. Chem. B, high quality eps figures available at http://www-math.mit.edu/~bazant/paper

    Alien Registration- Leger, Mary C E. (Auburn, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/31157/thumbnail.jp

    Detection of the buckminsterfullerene cation (C60+) in space

    Full text link
    In the early 90s, C60+ was proposed as the carrier of two diffuse interstellar bands (DIBs) at 957.7 and 963.2 nm, but a firm identification still awaits gas-phase spectroscopic data. Neutral C60, on the other hand, was recently detected through its infrared emission bands in the interstellar medium and evolved stars. In this contribution, we present the detection of C60+ through its infrared vibrational bands in the NGC 7023 nebula, based on spectroscopic observations with the Spitzer space telescope, quantum chemistry calculation, and laboratory data from the literature. This detection supports the idea that C60+ could be a DIB carrier, and provides robust evidence that fullerenes exist in the gas-phase in the interstellar medium. Modeling efforts to design specific observations, combined with new gas-phase data, will be essential to confirm this proposal. A definitive attribution of the 957.7 and 963.2 nm DIBs to C60+ would represent a significant step forward in the field.Comment: To appear in "Proceedings of IAU 297 symposium on the Diffuse Interstellar Bands", eds. J. Cami and N. Cox (5 pages

    Amaryllis : Valse Lente

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2044/thumbnail.jp

    A New Family of Planets ? "Ocean Planets"

    Full text link
    A new family of planets is considered which is between rochy terrestrial planets and gaseous giant ones: "Ocean-Planets". We present the possible formation, composition and internal models of these putative planets, including that of their ocean, as well as their possible Exobiology interest. These planets should be detectable by planet detection missions such as Eddington and Kepler, and possibly COROT (lauch scheduled in 2006). They would be ideal targets for spectroscopic missions such as Darwin/TPF.Comment: 15 pages, 3 figures submitted to Icarus notes (10 july 2003
    • …
    corecore