4 research outputs found

    Collision statistics in a dilute granular gas fluidized by vibrations in low gravity

    Get PDF
    We report an experimental study of a dilute "gas" of inelastically colliding particles excited by vibrations in low gravity. We show that recording the collision frequency together with the impulses on a wall of the container gives access to several quantities of interest. We observe that the mean collision frequency does not scale linearly with the number N of particles in the container. This is due to the dissipative nature of the collisions and is also directly related to the non extensive behaviour of the kinetic energy (the granular temperature is not intensive).Comment: to be pubished in Europhysics Letters (May/June 2006

    Dynamic structure factor of density fluctuations from direct imaging very near (both above and below) the critical point of SF6

    No full text
    Large density fluctuations were observed by illuminating a cylindrical cell filled with sulfur hexafluoride (SF6), very near its liquid-gas critical point (|T−Tc|<300 μK) and recorded using a microscope with 3 μm spatial resolution. Using a dynamic structure factor algorithm, we determined from the recorded images the structure factor (SF), which measures the spatial distribution of fluctuations at different moments, and the correlation time of fluctuations. This method authorizes local measurements in contrast to the classical scattering techniques that average fluctuations over the illuminating beam. We found that during the very early stages of phase separation the SF scales with the wave vector q according to the Lorentzian q−2, which shows that the liquid and vapor domains are just emerging. The critical wave number, which is related to the characteristic length of fluctuations, steadily decreases over time, supporting a sustained increase in the spatial scale of the fluctuating domains. The scaled evolution of the critical wave number obeys the universal evolution for the interconnected domains at high volume fraction with an apparent power law exponent of −0.35 ± 0.02. We also determined the correlation time of the fluctuations and inferred values for thermal diffusivity coefficient very near the critical point, above and below. The values were used to pinpoint the crossing of Tc within 13 μK

    Gas spreading on a heated wall wetted by liquid

    Get PDF
    This study deals with a simple pure fluid whose temperature is slightly below its critical temperature and whose density is nearly critical, so that the gas and liquid phases coexist. Under equilibrium conditions, such a liquid completely wets the container wall and the gas phase is always separated from the solid by a wetting film. We report a striking change in the shape of the gas-liquid interface influenced by heating under weightlessness where the gas phase spreads over a hot solid surface showing an apparent contact angle larger than 90°. We show that the two-phase fluid is very sensitive to the differential vapor recoil force and give an explanation that uses this nonequilibrium effect. We also show how these experiments help to understand the boiling crisis, an important technological problem in high-power boiling heat exchange
    corecore