52 research outputs found

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage

    Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios

    Get PDF

    Numerical mesoscale air-sea coupling over the Gulf of Lions during two Tramontane/Mistral events

    No full text
    International audienceThe near-sea surface meteorological conditions associated with strong wind events constitute a strong forcing on the ocean mixed layer. The Gulf of Lions is one of the most windy region of the Mediterranean basin, with frequent Mistral and Tramontane events. These northerly and north-westerly low-level flows, generally induced by a cyclogenesis in the Ligurian basin, are channelled and accelerated in the RhĂŽne and Aude valleys, respectively. They transport cold continental air over sea and induce strong momentum and heat exchanges at the air-sea interface. The local continental shelf circulation with sometimes transient coastal upwellings is also sensitive to these intense meteorological events. This study addresses the question of the sea surface scheme used in mesoscale atmospheric numerical modelling to represent the ocean mixed layer response under these severe wind events. Several slab ocean models have been used coupled with the Weather Research and Forecasting (WRF) model at 21 and 7-km resolution and applied on two Mistral/Tramontane cases (23-26 March 1998 and 5-9 November 1999): (i) a slab model based on the transport divergence equation where the mixed layer evolution is only driven by the wind stress; (ii) a slab model where the temperature is the only prognostic variable and evolves according to the net surface heat budget and (iii) the complete slab scheme from Price [1981]. The coupled simulations were also compared to two basic simulations, one using a constant sea surface temperature (SST) field during all of the model integration and another using a 6 hourly-update SST reanalysis. In this study, we mainly focused on the slab models performances. We identified the processes involved in the ocean mixed layer response under Mistral and Tramontane situations at mesoscale, i. e. local and fast cooling and deepening, and finally we investigated the feedbacks of an interactive ocean mixed layer on the atmospheric simulation

    Numerical mesoscale air-sea coupling over the Gulf of Lions during two Tramontane/Mistral events

    No full text
    International audienceThe near-sea surface meteorological conditions associated with strong wind events constitute a strong forcing on the ocean mixed layer. The Gulf of Lions is one of the most windy region of the Mediterranean basin, with frequent Mistral and Tramontane events. These northerly and north-westerly low-level flows, generally induced by a cyclogenesis in the Ligurian basin, are channelled and accelerated in the RhĂŽne and Aude valleys, respectively. They transport cold continental air over sea and induce strong momentum and heat exchanges at the air-sea interface. The local continental shelf circulation with sometimes transient coastal upwellings is also sensitive to these intense meteorological events. This study addresses the question of the sea surface scheme used in mesoscale atmospheric numerical modelling to represent the ocean mixed layer response under these severe wind events. Several slab ocean models have been used coupled with the Weather Research and Forecasting (WRF) model at 21 and 7-km resolution and applied on two Mistral/Tramontane cases (23-26 March 1998 and 5-9 November 1999): (i) a slab model based on the transport divergence equation where the mixed layer evolution is only driven by the wind stress; (ii) a slab model where the temperature is the only prognostic variable and evolves according to the net surface heat budget and (iii) the complete slab scheme from Price [1981]. The coupled simulations were also compared to two basic simulations, one using a constant sea surface temperature (SST) field during all of the model integration and another using a 6 hourly-update SST reanalysis. In this study, we mainly focused on the slab models performances. We identified the processes involved in the ocean mixed layer response under Mistral and Tramontane situations at mesoscale, i. e. local and fast cooling and deepening, and finally we investigated the feedbacks of an interactive ocean mixed layer on the atmospheric simulation

    Numerical mesoscale air-sea coupling over the Gulf of Lions during two Tramontane/Mistral events

    No full text
    International audienceThe near-sea surface meteorological conditions associated with strong wind events constitute a strong forcing on the ocean mixed layer. The Gulf of Lions is one of the most windy region of the Mediterranean basin, with frequent Mistral and Tramontane events. These northerly and north-westerly low-level flows, generally induced by a cyclogenesis in the Ligurian basin, are channelled and accelerated in the RhĂŽne and Aude valleys, respectively. They transport cold continental air over sea and induce strong momentum and heat exchanges at the air-sea interface. The local continental shelf circulation with sometimes transient coastal upwellings is also sensitive to these intense meteorological events. This study addresses the question of the sea surface scheme used in mesoscale atmospheric numerical modelling to represent the ocean mixed layer response under these severe wind events. Several slab ocean models have been used coupled with the Weather Research and Forecasting (WRF) model at 21 and 7-km resolution and applied on two Mistral/Tramontane cases (23-26 March 1998 and 5-9 November 1999): (i) a slab model based on the transport divergence equation where the mixed layer evolution is only driven by the wind stress; (ii) a slab model where the temperature is the only prognostic variable and evolves according to the net surface heat budget and (iii) the complete slab scheme from Price [1981]. The coupled simulations were also compared to two basic simulations, one using a constant sea surface temperature (SST) field during all of the model integration and another using a 6 hourly-update SST reanalysis. In this study, we mainly focused on the slab models performances. We identified the processes involved in the ocean mixed layer response under Mistral and Tramontane situations at mesoscale, i. e. local and fast cooling and deepening, and finally we investigated the feedbacks of an interactive ocean mixed layer on the atmospheric simulation

    Ocean response in numerical mesoscale modelling during high-wind events over the Gulf of Lions

    No full text
    International audienceThe near-sea surface meteorological conditions associated with strong wind events constitute a strong forcing on the ocean mixed layer. The Gulf of Lions is one of the most windy region of the Mediterranean basin, with frequent Mistral and Tramontane events. These northerly and north-westerly low-level flows, generally induced by a cyclogenesis in the Ligurian basin, transport cold continental air over sea and induce strong momentum and heat exchanges at the air-sea interface. The local continental shelf circulation with sometimes transient coastal upwellings is also sensitive to these intense meteorological events. A preliminary study addresses the question of the sea surface scheme used in mesoscale atmospheric numerical modelling to represent the ocean mixed layer response under these severe wind events. Several slab ocean models have been used coupled with the Weather Research and Forecasting (WRF) model at 21 and 7-km resolution and applied on two Mistral/Tramontane cases. We mainly focused on the slab models performances to represent the ocean mixed layer response under Mistral and Tramontane situations at mesoscale, i. e. local and fast cooling and deepening, and finally we investigated the feedbacks of an interactive ocean mixed layer on the atmospheric simulation. In a second experimental set, the downscaling of the NCEP reanalyses over the full Mediterranean basin has been done with the WRF model between August 1998 and July 1999. The atmospheric fields obtained are then used to drive the regional NEMO-MED12 ocean model with a 1/12° resolution in a perpetual mode. The benefit of increasing the space and time resolutions of the atmospheric forcing (20 to nearly 7 km; daily to 3-hourly) is estimated by a comparison of the ocean model performances to represent the general Mediterranean circulation as the characteristics of the mixed layer, of the deep convection and of the upwellings between the sensitivity experiments, and by a comparison of our experiments to observations and climatologies. A special focus on the local 3D circulation in the Gulf of Lions under high-wind events in these simulations will be presented during the conference
    • 

    corecore