40 research outputs found

    Quark flavour conserving violations of the lepton number

    Get PDF
    We study supersymmetric models of lepton and baryon number violation based on an abelian family gauge group. Due to possible lepton-Higgs mixing, the lepton violating couplings are related to the Yukawa couplings and may be generated by them even if they were absent in the original theory. Such terms may be dominant and are not given by the naive family charge counting rules. This enhancement mechanism can provide an alignment between lepton-number violating terms and Yukawa couplings: as a result they conserve quark flavour. A natural way of suppressing baryon number violation in this class of models is also proposed

    Diffractive SUSY particle production at the LHC

    Get PDF
    We give detailed predictions for diffractive SUSY Higgs boson and top squark associated productions at the LHC via the exclusive double pomeron exchange mechanism. We study how the SUSY Higgs cross section and the signal over background ratio are enhanced as a function of tangent beta in different regimes. The prospects are particularly promising in the ``anti-decoupling'' regime, which we study in detail. We also give the prospects for a precise measurement of the top squark mass using the threshold scan of central diffractive associated top squark events at the LHC.Comment: 14 pages, 6 fig

    Report of the GDR working group on the R-parity violation

    Full text link
    This report summarizes the work of the "R-parity violation group" of the French Research Network (GDR) in Supersymmetry, concerning the physics of supersymmetric models without conservation of R-parity at HERA, LEP, Tevatron and LHC and limits on R-parity violating couplings from various processes. The report includes a discussion of the recent searches at the HERA experiment, prospects for new experiments, a review of the existing limits, and also theoretically motivated alternatives to R-parity and a brief discussion on the implications of R-parity violation on the neutrino masses.Comment: 60 pages, LaTeX, 22 figures, 2 table

    Higgs as a pseudo-Goldstone boson, the mu problem and gauge-mediated supersymmetry breaking

    Full text link
    We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavour problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the mu/Bmu problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tan beta value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos.Comment: 19 pages, 6 figures. New section 3.3 on the mu/Bmu problem, more detailed analytic computation in section 4.1, error in Fig. 5 corrected, significant redactional changes (including abstract, introduction and conclusion) in order to better emphasize the main results of the paper. Title changed in journal. Final version to appear in Eur. Phys. J.

    Lepton Flavor Violation within a realistic SO(10)/G(224) Framework

    Full text link
    Lepton flavor violation (LFV) is studied within a realistic unified framework, based on supersymmetric SO(10) or an effective G(224) = SU(2)_L\times SU(2)_R\times SU(4)^c symmetry, that successfully describes (i) fermion masses and mixings, (ii) neutrino oscillations, as well as (iii) CP violation. LFV emerges as an important prediction of this framework, bringing no new parameters, barring the few SUSY parameters, which are assumed to be flavor-universal at M^*>= M_{GUT}. We study LFV (i.e. \mu -> e\gamma, \tau -> \mu\gamma, \tau -> e\gamma and \mu N -> e N) within this framework by including contributions both from the presence of the right handed neutrinos as well as those arising from renormalization group running in the post-GUT regime (M^* to M_{GUT}). Typically the latter, though commonly omitted in the literature, is found to dominate. Our predicted rates for \mu -> e\gamma show that while some choices of (m_o, m_{1/2}) are clearly excluded by the current empirical limit, this decay should be seen with an improvement of the current sensitivity by a factor of 10--100, even if sleptons are moderately heavy (<= 800 GeV, say). For the same reason, \mu-e conversion (\mu N -> e N) should show in the planned MECO experiment. Implications of WMAP and (g-2)_{\mu}-measurements are noted, as also the significance of the measurement of parity-odd asymmetry in the decay of polarized \mu^+ into e^+ \gamma.Comment: 17 pages, 1 figur

    Supersymmetry breaking induced by radiative corrections

    Get PDF
    We show that simultaneous gauge and supersymmetry breaking can be induced by radiative corrections, a la Coleman-Weinberg. When a certain correlation among the superpotential parameters is present, a local supersymmetry-breaking minimum is found in the effective potential of a gauge non-singlet field, in a region where the tree-level potential is almost flat. Supersymmetry breaking is then transmitted to the MSSM through gauge and chiral messenger loops, thus avoiding the suppression of gaugino masses characteristic of direct gauge mediation models. The use of a single field ensures that no dangerous tachyonic scalar masses are generated at the one-loop level. We illustrate this mechanism with an explicit example based on an SU(5) model with a single adjoint. An interesting feature of the scenario is that the GUT scale is increased with respect to standard unification, thus allowing for a larger colour Higgs triplet mass, as preferred by the experimental lower bound on the proton lifetime.Comment: 22 pages, 3 figures. Two references added, small redactional changes, some discussion improved. Results unchange

    Minimal Scenarios for Leptogenesis and CP Violation

    Full text link
    The relation between leptogenesis and CP violation at low energies is analyzed in detail in the framework of the minimal seesaw mechanism. Working, without loss of generality, in a weak basis where both the charged lepton and the right-handed Majorana mass matrices are diagonal and real, we consider a convenient generic parametrization of the Dirac neutrino Yukawa coupling matrix and identify the necessary condition which has to be satisfied in order to establish a direct link between leptogenesis and CP violation at low energies. In the context of the LMA solution of the solar neutrino problem, we present minimal scenarios which allow for the full determination of the cosmological baryon asymmetry and the strength of CP violation in neutrino oscillations. Some specific realizations of these minimal scenarios are considered. The question of the relative sign between the baryon asymmetry and CP violation at low energies is also discussed.Comment: 36 pages, 5 figures; minor corrections and references updated. Final version to appear in Phys. Rev.

    Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle

    Full text link
    We study effects of supersymmetric particles in various rare B decay processes as well as in the unitarity triangle analysis. We consider three different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider two cases of the mass matrix of the right-handed neutrinos. We calculate direct and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity triangle analysis in these models. We show that large deviations are possible for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of deviations from the standard model will be useful to discriminate the different SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure

    Probing the seesaw mechanism with neutrino data and leptogenesis

    Get PDF
    In the framework of the seesaw mechanism with three heavy right-handed Majorana neutrinos and no Higgs triplets we carry out a systematic study of the structure of the right-handed neutrino sector. Using the current low-energy neutrino data as an input and assuming hierarchical Dirac-type neutrino masses mDim_{Di}, we calculate the masses MiM_i and the mixing of the heavy neutrinos. We confront the inferred properties of these neutrinos with the constraints coming from the requirement of a successful baryogenesis via leptogenesis. In the generic case the masses of the right-handed neutrinos are highly hierarchical: MimDi2M_i \propto m_{Di}^2; the lightest mass is M1103106M_1 \approx 10^3 - 10^6 GeV and the generated baryon-to-photon ratio ηB1014\eta_B\lesssim 10^{-14} is much smaller than the observed value. We find the special cases which correspond to the level crossing points, with maximal mixing between two quasi-degenerate right-handed neutrinos. Two level crossing conditions are obtained: mee0{m}_{ee}\approx 0 (1-2 crossing) and d120d_{12}\approx 0 (2-3 crossing), where mee{m}_{ee} and d12d_{12} are respectively the 11-entry and the 12-subdeterminant of the light neutrino mass matrix in the basis where the neutrino Yukawa couplings are diagonal. We show that sufficient lepton asymmetry can be produced only in the 1-2 crossing where M1M2108M_1 \approx M_2 \approx 10^{8} GeV, M31014M_3 \approx 10^{14} GeV and (M2M1)/M2105(M_2 - M_1)/ M_2 \lesssim 10^{-5}.Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and references) added on non-thermal leptogenesi

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v
    corecore