113 research outputs found

    Cortical auditory-evoked responses in preterm neonates: Revisited by spectral and temporal analyses

    Get PDF
    © The Author 2017. Published by Oxford University Press. Characteristic preterm EEG patterns of "Delta-brushes" (DBs) have been reported in the temporal cortex following auditory stimuli, but their spatio-temporal dynamics remains elusive. Using 32-electrode EEG recordings and co-registration of electrodes' position to 3D-MRI of age-matched neonates, we explored the cortical auditory-evoked responses (AERs) after 'click' stimuli in 30 healthy neonates aged 30-38 post-menstrual weeks (PMW). (1) We visually identified auditory-evoked DBs within AERs in all the babies between 30 and 33 PMW and a decreasing response rate afterwards. (2) The AERs showed an increase in EEG power from delta to gamma frequency bands over the middle and posterior temporal regions with higher values in quiet sleep and on the right. (3) Time-frequency and averaging analyses showed that the delta component of DBs, which negatively peaked around 550 and 750 ms over the middle and posterior temporal regions, respectively, was superimposed with fast (alpha-gamma) oscillations and corresponded to the late part of the cortical auditory-evoked potential (CAEP), a feature missed when using classical CAEP processing. As evoked DBs rate and AERs delta to alpha frequency power decreased until full term, auditory-evoked DBs are thus associated with the prenatal development of auditory processing and may suggest an early emerging hemispheric specialization

    Interfering with Glycolysis Causes Sir2-Dependent Hyper-Recombination of Saccharomyces cerevisiae Plasmids

    Get PDF
    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH–encoding plasmid when the NAD+ metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux

    Molecular association of glucose-6- phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    Get PDF
    Background: For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG).Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods: GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result: Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG,association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion: PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG

    Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice

    Get PDF
    International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia

    Pre- and post-degradation analysis of composite materials with different moduli in tension and compression

    No full text
    An isoparametric finite element tor the analysis of multi-layer composite materials is presented. Several linear and nonlinear stress-strain relations are discussed. Special attention is given to the composite materials with different moduli in tension and compression, for which a new mathematical model is presented and tested. Different failure criteria for the matrix degradation are incorporated in the element and several post-degradation behaviors are also considered. Finally we discuss the role of the Newton-Raphson method in composite materials, especially in the presence of geometrical nonlinearities
    • …
    corecore