3,392 research outputs found

    First results in terrain mapping for a roving planetary explorer

    Get PDF
    To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain

    In situ formation of silk-gelatin hybrid hydrogels for affinity-based growth factor sequestration and release

    Get PDF
    Silk fibroin (SF) and gelatin are natural polymers suitable for biomedical applications, including controlled protein release. SF offers high mechanical strength and slow enzymatic degradability, whereas gelatin contains bioactive motifs that can provide biomimicry to the resulting scaffolds. Owing to their complementary material properties, SF and gelatin are increasingly being used together to afford hybrid scaffolds with adjustable properties. Here, we report the use of in situ crosslinked SF/gelatin hydrogels as a platform for tunable growth factor sequestration and delivery. We demonstrate that the physical assembly of SF into insoluble networks could be accelerated by sonication even in the presence of gelatin. However, the processing conditions from which to prepare SF aqueous solution (e.g., heating duration and number of processing steps) drastically altered the resulting hydrogel physical properties. Furthermore, the stiffness of SF/gelatin hybrid gels displayed temperature dependency. Specifically, incorporation of gelatin increased gel stiffness at 25 °C but decreases hydrogel mechanical stability at 37 °C. The thermostability of SF/gelatin gels can be restored by using a low concentration of genipin, a naturally derived chemical crosslinker. We also incorporate heparin-conjugated gelatin (GH) into the hydrogels to create a hybrid matrix capable of sequestering growth factors, such as basic fibroblast growth factor (bFGF). Both sonicated SF (SSF) and hybrid SSF-GH gels exhibit moderate bFGF sequestration, but only SSF-GH gels afford slow release of bFGF. On the other hand, genipin-stabilized network exhibited the highest retention and sustained release of bFGF, suggesting the suitability of this particular formulation as a scaffold for tissue engineering applications

    Human brain anatomy reflects separable genetic and environmental components of socioeconomic status

    Full text link
    Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES–gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy

    Fibrosis Evaluation by Transient Elastography in Patients With Long-Term Sustained HCV Clearance

    Get PDF
    BACKGROUND: Reversibility of advanced fibrosis after HCV-clearance is an important goal of therapy. OBJECTIVES: Measuring liver stiffness (LS) by transient elastography (TE) might be helpful in this setting. PATIENTS AND METHODS: We evaluated 104 patients with biopsy-proven chronic hepatitis C (CHC) and sustained virological response (SVR) after Peg-Interferon (IFN) plus ribavirin since at least 18 months. HCV-eradication was confirmed searching for serum HCV-RNA (TMAÂź sensitivity > 5-10 IU/ml). Data from literature reported the best LS cut-off values for different stages of liver fibrosis were 7.1 kPa for Metavir stage 2 (F2), 9.5 kPa for F3 and 12.5 for cirrhosis (F4). RESULTS: TE was not reliable in four SVR obese patients. Metavir-stage of biopsy was F0-1 in 28, F2 in 47, F3 in 17 and F4 in eight patients. The median interval elapsed since achieving SVR was 36 months (range: 18-77, SDÂŹÂŹ:18). Stratifying patients according to the histological stage assessed before treatment, a clear-cut gradient of LS values was observed from F0-1: median: 3.8 kPa (range: 3.5-4.9) to F2: 4.6 kPa (3.8-6.0), F3: 6.2 kPa (4.8-8.6) and F4: 8.4 kPa (6.2-9.2) (P = 0.001). Overall, 86 patients had lower values of LS than the expected LS values according to Metavir-stage. At multivariate logistic analysis Îł-GT and histological steatosis were independently associated with persistence of higher values of LS. CONCLUSION: Long term responders to IFN-based therapies have lower LS values than those who are untreated and still viraemic. High levels of Îł-GT and liver steatosis, all markers of insulin resistance, may hamper reduction of liver stiffness after HCV-clearance

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings

    Full text link
    Within the framework of quantization of the macroscopic electromagnetic field, equations of motion and an effective Hamiltonian for treating both the resonant dipole-dipole interaction between two-level atoms and the resonant atom-field interaction are derived, which can suitably be used for studying the influence of arbitrary dispersing and absorbing material surroundings on these interactions. The theory is applied to the study of the transient behavior of two atoms that initially share a single excitation, with special emphasis on the role of the two competing processes of virtual and real photon exchange in the energy transfer between the atoms. In particular, it is shown that for weak atom-field interaction there is a time window, where the energy transfer follows a rate regime of the type obtained by ordinary second-order perturbation theory. Finally, the resonant dipole-dipole interaction is shown to give rise to a doublet spectrum of the emitted light for weak atom-field interaction and a triplet spectrum for strong atom-field interaction.Comment: 15 pages, 1 figure, RevTE

    The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation

    Get PDF
    Human mutations in the cardiac transcription factor gene TBX5 cause Congenital Heart Disease (CHD), however the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the Nucleosome Remodeling and Deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD missense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD

    Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin

    Get PDF
    AbstractThis work deals with the preparation of chitosan/tripolyphosphate microparticles (CHT/TPP) using microemulsion system based on water/benzyl alcohol. The morphology of the microparticles was evaluated by scanning electron microscopy (SEM). The microparticles were also characterized through infrared spectroscopy (FTIR) and wide-angle X-ray scattering (WAXS). The morphology and crystallinity of microparticles depended mainly on CHT/TPP ratio. Studies of controlled release of HP were evaluated in distilled water and in simulated gastric fluid. Besides, the profile of HP releasing could be tailored by tuning the CHT/TPP molar ratio. Finally, these prospective results allow the particles to be employed as site-specific HP controlled release system

    Winter hardiness of \u3ci\u3eMiscanthus\u3c/i\u3e (III): Genome‐wide association and genomic prediction for overwintering ability in \u3ci\u3eMiscanthus sinensis\u3c/i\u3e

    Get PDF
    Overwintering ability is an important selection criterion for Miscanthus breeding in temperate regions. Insufficient overwintering ability of the currently leading Miscanthus biomass cultivar, M. ×giganteus (M×g) ‘1993–1780’, in regions where average annual minimum temperatures are −26.1°C (USDA hardiness zone 5) or lower poses a pressing need to develop new cultivars with superior cold tolerance. To facilitate breeding of Miscanthus, this study characterized phenotypic and genetic variation of overwintering ability in an M. sinensis germplasm panel consisting of 564 accessions, evaluated in field trials at three locations in North America and two in Asia. Genome‐wide association (GWA) and genomic prediction analyses were performed. The Korea/N China M. sinensis genetic group is a valuable gene pool for cold tolerance. The Yangtze‐Qinling, Southern Japan, and Northern Japan genetic groups were also potential sources of cold tolerance. A total of 73 marker–trait associations were detected for overwintering ability. Estimated breeding value for overwintering ability based on these 73 markers could explain 55% of the variation for first winter overwintering ability among M. sinensis. Average genomic prediction ability for overwintering ability across 50 fivefold cross‐validations was high (~0.73) after accounting for population structure. Common genomic regions for overwintering ability were detected by GWA analyses and a previous parallel QTL mapping study using three interconnected biparental F1 populations. One QTL on Miscanthus LG 8 encompassed five GWA hits and a known cold‐responsive gene, COR47. The other overwintering ability QTL on Miscanthus LG 11 contained two GWA hits and three known cold stress‐related genes, carboxylesterase 13 (CEX13), WRKY2 transcription factor, and cold shock domain (CSDP1). Miscanthus accessions collected from high latitude locations with cold winters had higher rates of overwintering, and more alleles for overwintering, than accessions collected from southern locations with mild winters
    • 

    corecore