247 research outputs found

    LANDSAT (ERTS) used as a basis for geological volcanological mapping in the central Andes

    Get PDF
    LANDSAT images of the central Andes (N-Chile, W-Bolivia) were effectively used for volcanological mapping of an area about 160,000 km. The map shown exhibits more and better details than the older small scale geological maps of that area. Even on a scale of 1:1,000,000 details greater than 200 m in size are recognizable. The interpretation of LANDSAT images makes it possible to establish relative age sequences of strato-volcanoes. Finally, the images will also be helpful in prospecting for mineral deposits and geothermal sources

    Free and open source software in computing education

    Get PDF
    Free and Open Source Software (FOSS) exemplifies the merit and successes of open content, understood broadly as creative work that explicitly allows sharing and further changes by anyone, whether an individual or organization. Although the benefits of improving computing education with open source practices are largely acknowledged, transforming teaching to create effective learning environments has many challenges. The panelists will bring different perspectives on teaching strategies and curricular content they have used in their classrooms. These perspectives will exemplify key issues with FOSS-based education and FOSS-based IT systems. The developer and user communities established around FOSS-based IT systems are of particular interest to the IT discipline because of its focus on user centeredness and advocacy for advancing professional practices in authentic environments

    Volcanism subprogram: Volcanological interpretation of the northern part of the Occidental Cordillera of Bolivia, utilizing ERTS imagery

    Get PDF
    The author has identified the following significant results. In the present study, 6 ERTS-1 images have been interpreted on a 1:1 million scale (black and white) with the respective field reconnaissance. The area studied is located in the region bordering with Chile and includes the western part of the Bolivian Altiplano, the volcano Cordillera (western cordillera) and the northern part of Chile to the Pacific Coast. The greater part of this region is formed by Pliocene/Pleistocene volcani rock, which is discordant with the Tertiary sediments with intercalations of calcareous tuff. The ERTS-1 imagery permits the tracing of regional boundaries of the great volcanic formations and the alinements of the volcanic bodies along the fault zones. They also permit a clear examination of the volcanic apparatus, including their secondary forms, such as lava flows, parasitic cones, and lava domes. Because of the great scale, it is not possible to identify either the small structures or those of low relief. On the basis of the interpretation of the images, it is possible to give an idea of the relative age of the volcanoes

    Reduction of Hydrophilic Ubiquinones by the Flavin in Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) and Production of Reactive Oxygen Species†

    Get PDF
    ABSTRACT: NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, energy-transducing, membrane-bound enzyme that contains 45 different subunits, a non-covalently bound flavin mononucleotide, and eight iron-sulfur clusters. The mechanisms of NADH oxidation and intramolecular electron transfer by complex I are gradually being defined, but the mechanism linking ubiquinone reduction to proton translocation remains unknown. Studies of ubiquinone reduction by isolated complex I are problematic because the extremely hydrophobic natural substrate, ubiquinone-10, must be substituted with a relatively hydrophilic analogue (such as ubiquinone-1). Hydrophilic ubiquinones are reduced by an additional, non-energy-transducing pathway (which is insensitive to inhibitors such as rotenone and piericidin A). Here, we show that inhibitor-insensitive ubiquinone reduction occurs by a ping-pong type mechanism, catalyzed by the flavin mononucleotide cofactor in the active site for NADH oxidation. Moreover, semiquinones produced at the flavin site initiate redox cycling reactions with molecular oxygen, producing superoxide radicals and hydrogen peroxide. The ubiquinone reactant is regenerated, so the NADH:Q reaction becomes superstoichiometric. Idebenone, an artificial ubiquinone showing promise in the treatment of Friedreich’s Ataxia, reacts at the flavin site. The factors which determine the balance of reactivity between the two sites of ubiquinone reduction (the energy-transducing site and the flavi

    We All Know How, Don’t We? On the Role of Scrum in IT-Offshoring

    Get PDF
    Part 2: Creating Value through Software DevelopmentInternational audienceOffshoring in the IT-industry involves dual interactions between a mother company and an external supplier, often viewed with an implicit perspective from the mother company. This article review general off shoring and IT offshoring literature, focusing on the proliferation of a globally available set of routines; Scrum and Agile. Two cases are studied; a small company and short process and a large mother company with a long process. The interactions of the set ups shows that global concepts like Scrum and Agile are far from a common platform. The “well known” concepts are locally shaped and the enterprises have mixed experiences

    Protection by the NDI1 Gene against Neurodegeneration in a Rotenone Rat Model of Parkinson's Disease

    Get PDF
    It is widely recognized that mitochondrial dysfunction, most notably defects in the NADH-quinone oxidoreductase (complex I), is closely related to the etiology of sporadic Parkinson's disease (PD). In fact, rotenone, a complex I inhibitor, has been used for establishing PD models both in vitro and in vivo. A rat model with chronic rotenone exposure seems to reproduce pathophysiological conditions of PD more closely than acute mouse models as manifested by neuronal cell death in the substantia nigra and Lewy body-like cytosolic aggregations. Using the rotenone rat model, we investigated the protective effects of alternative NADH dehydrogenase (Ndi1) which we previously demonstrated to act as a replacement for complex I both in vitro and in vivo. A single, unilateral injection of recombinant adeno-associated virus carrying the NDI1 gene into the vicinity of the substantia nigra resulted in expression of the Ndi1 protein in the entire substantia nigra of that side. It was clear that the introduction of the Ndi1 protein in the substantia nigra rendered resistance to the deleterious effects caused by rotenone exposure as assessed by the levels of tyrosine hydroxylase and dopamine. The presence of the Ndi1 protein also prevented cell death and oxidative damage to DNA in dopaminergic neurons observed in rotenone-treated rats. Unilateral protection also led to uni-directional rotation of the rotenone-exposed rats in the behavioral test. The present study shows, for the first time, the powerful neuroprotective effect offered by the Ndi1 enzyme in a rotenone rat model of PD

    Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.

    Get PDF
    Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies
    corecore