550 research outputs found

    Combined Description of N‟N\bf{\overline{N}N} Scattering and Annihilation With A Hadronic Model

    Full text link
    A model for the nucleon-antinucleon interaction is presented which is based on meson-baryon dynamics. The elastic part is the GG-parity transform of the Bonn NNNN potential. Annihilation into two mesons is described in terms of microscopic baryon-exchange processes including all possible combinations of π,η,ρ,ω,a0,f0,a1,f1,a2,f2,K,K∗\pi,\eta,\rho,\omega,a_0,f_0,a_1,f_1,a_2,f_2,K,K^*. The remaining annihilation part is taken into account by a phenomenological energy- and state independent optical potential of Gaussian form. The model enables a simultaneous description of nucleon-antinucleon scattering and annihilation phenomena with fair quality.Comment: revised version, REVTEX, 9 pages, 10 figures available from this URL ftp://ikp113.ikp.kfa-juelich.de/pub/kph140/nucl-th.9411014.u

    New pixelized Micromegas detector for the COMPASS experiment

    Get PDF
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece Minor details added and language corrections don

    Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    Full text link
    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state

    Eta photoproduction off the neutron at GRAAL: Evidence for a resonant structure at W=1.67 GeV

    Full text link
    New (preliminary) data on eta photoproduction off the neutron are presented. These data reveal a resonant structure at W=1.67 GeV.Comment: 8 pages, 4 figures. Published in Proceedings of Workshop on the Physics of Excited Nucleons NSTAR2004, Grenoble, France, March 24 - 27, pg.19

    Eta photoproduction off the neutron at GRAAL

    Full text link
    The gamma n -> eta n quasi-free cross section reveals a resonant structure at W ~ 1.675 GeV. This structure may be a manifestation of a baryon resonance. A priori its properties, the possibly narrow width and the strong photocoupling to the neutron, look surprising. This structure may also signal the existence of a narrow state.Comment: To appear in Proceedings of Workshop on the Physics of Excited Nucleons NSTAR2005, 12 - 15 October 2005, Tallahassee, Florida, US

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements

    Full text link
    The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy

    Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes

    Get PDF
    Prokaryotes encode various host defense systems that provide protection against mobile genetic elements. Restriction-modification (R-M) and CRISPR-Cas systems mediate host defense by sequence specific targeting of invasive DNA. T-even bacteriophages employ covalent modifications of nucleobases to avoid binding and therefore cleavage of their DNA by restriction endonucleases. Here, we describe that DNA glucosylation of bacteriophage genomes affects interference of some but not all CRISPR-Cas systems. We show that glucosyl modification of 5-hydroxymethylated cytosines in the DNA of bacteriophage T4 interferes with type I-E and type II-A CRISPR-Cas systems by lowering the affinity of the Cascade and Cas9-crRNA complexes for their target DNA. On the contrary, the type V-A nuclease Cas12a (also known as Cpf1) is not impaired in binding and cleavage of glucosylated target DNA, likely due to a more open structural architecture of the protein. Our results suggest that CRISPR-Cas systems have contributed to the selective pressure on phages to develop more generic solutions to escape sequence specific host defense systems

    Eta photoproduction on the neutron at GRAAL: Measurement of the differential cross section

    Full text link
    In this contribution, we will present our first preliminary measurement of the differential cross section for the reaction gamma+n->eta+n. Comparison of the reactions gamma+p->eta+p for free and bound proton (D2 target) will also be discussed.Comment: 6 pages, 4 figures, Proceedings of the 10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon, August 29-September 4 2004, Beijing, Chin

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A⊄_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30∘<Ξe<40∘30^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A⊄_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 10−6^{-6} and A⊄_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 10−6^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A⊄_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A⊄_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.
    • 

    corecore