109 research outputs found

    The effective mass of two--dimensional 3He

    Full text link
    We use structural information from diffusion Monte Carlo calculations for two--dimensional 3He to calculate the effective mass. Static effective interactions are constructed from the density-- and spin structure functions using sumrules. We find that both spin-- and density-- fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single--particle self--energy with increasing density, which eventually leads to a divergent effective mass.Comment: 4 pages, accepted in PR

    Concentration Dependence of the Effective Mass of He-3 Atoms in He-3/He-4 Mixtures

    Full text link
    Recent measurements by Yorozu et al. (S. Yorozu, H. Fukuyama, and H. Ishimoto, Phys. Rev. B 48, 9660 (1993)) as well as by Simons and Mueller (R. Simons and R. M. Mueller, Czhechoslowak Journal of Physics Suppl. 46, 201 (1976)) have determined the effective mass of He-3 atoms in a He-3/He-4 mixture with great accuracy. We here report theoretical calculations for the dependence of that effective mass on the He-3 concentration. Using correlated basis functions perturbation theory to infinite order to compute effective interactions in the appropriate channels, we obtain good agreement between theory and experiment.Comment: 4 pages, 1 figur

    Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics

    Full text link
    Density-functional theory is applied to compute the ground-state energies of quantum hard-sphere solids. The modified weighted-density approximation is used to map both the Bose and the Fermi solid onto a corresponding uniform Bose liquid, assuming negligible exchange for the Fermi solid. The required liquid-state input data are obtained from a paired phonon analysis and the Feynman approximation, connecting the static structure factor and the linear response function. The Fermi liquid is treated by the Wu-Feenberg cluster expansion, which approximately accounts for the effects of antisymmetry. Liquid-solid transitions for both systems are obtained with no adjustment of input data. Limited quantitative agreement with simulation indicates a need for further improvement of the liquid-state input through practical alternatives to the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte

    Single Particle and Fermi Liquid Properties of He-3/--He-4 Mixtures: A Microscopic Analysis

    Full text link
    We calculate microscopically the properties of the dilute He-3 component in a He-3/--He-4 mixture. These depend on both, the dominant interaction between the impurity atom and the background, and the Fermi liquid contribution due to the interaction between the constituents of the He-3 component. We first calculate the dynamic structure function of a He-3 impurity atom moving in He-3. From that we obtain the excitation spectrum and the momentum dependent effective mass. The pole strength of this excitation mode is strongly reduced from the free particle value in agreement with experiments; part of the strength is distributed over high frequency excitations. Above k > 1.7A˚\AA^{-1}$ the motion of the impurity is damped due to the decay into a roton and a low energy impurity mode. Next we determine the Fermi--Liquid interaction between He-4 atoms and calculate the pressure-- and concentration dependence of the effective mass, magnetic susceptibility, and the He-3--He-3 scattering phase shifts. The calculations are based on a dynamic theory that uses, as input, effective interactions provided by the Fermi hypernetted--chain theory. The relationship between both theories is discussed. Our theoretical effective masses agree well with recent measurements by Yorozu et al. (Phys. Rev. B 48, 9660 (1993)) as well as those by R. Simons and R. M. Mueller (Czekoslowak Journal of Physics Suppl. 46, 201 (1996)), but our analysis suggests a new extrapolation to the zero-concentration limit. With that effective mass we also find a good agreement with the measured Landau parameter F_0^a.Comment: 47 pages, 15 figure

    Superfluid 4He dynamics beyond quasiparticle excitations

    Get PDF
    The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.Comment: 5 pages, 3 figure

    Layer- and bulk roton excitations of 4He in porous media

    Full text link
    We examine the energetics of bulk and layer-roton excitations of 4He in various porous medial such as aerogel, Geltech, or Vycor, in order to find out what conclusions can be drawn from experiments on the energetics about the physisorption mechanism. The energy of the layer-roton minimum depends sensitively on the substrate strength, thus providing a mechanism for a direct measurement of this quantity. On the other hand, bulk-like roton excitations are largely independent of the interaction between the medium and the helium atoms, but the dependence of their energy on the degree of filling reflects the internal structure of the matrix and can reveal features of 4He at negative pressures. While bulk-like rotons are very similar to their true bulk counterparts, the layer modes are not in close relation to two-dimensional rotons and should be regarded as a third, completely independent kind of excitation

    Metal Surface Energy: Persistent Cancellation of Short-Range Correlation Effects beyond the Random-Phase Approximation

    Get PDF
    The role that non-local short-range correlation plays at metal surfaces is investigated by analyzing the correlation surface energy into contributions from dynamical density fluctuations of various two-dimensional wave vectors. Although short-range correlation is known to yield considerable correction to the ground-state energy of both uniform and non-uniform systems, short-range correlation effects on intermediate and short-wavelength contributions to the surface formation energy are found to compensate one another. As a result, our calculated surface energies, which are based on a non-local exchange-correlation kernel that provides accurate total energies of a uniform electron gas, are found to be very close to those obtained in the random-phase approximation and support the conclusion that the error introduced by the local-density approximation is small.Comment: 5 pages, 1 figure, to appear in Phys. Rev.

    Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas

    Full text link
    We present arguments that the low density surface region of self-bounded superfluid 4^4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T=0T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4^4He droplets by Lewart, Pandharipande and Pieper in 1988. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.Comment: 4 pages, 1 Postscript figur

    The free surface of superfluid 4He at zero temperature

    Full text link
    The structure and energetics of the free surface of superfluid 4^4He are studied using the diffusion Monte Carlo method. Extending a previous calculation by Vall\'es and Schmidt, which used the Green's function Monte Carlo method, we study the surface of liquid 4^4He within a slab geometry using a larger number of particles in the slab and an updated interatomic potential. The surface tension is accurately estimated from the energy of slabs of increasing surface density and its value is close to one of the two existing experimental values. Results for the density profiles allow for the calculation of the surface width which shows an overall agreement with recent experimental data. The dependence on the transverse direction to the surface of other properties such as the two-body radial distribution function, structure factor, and one-body density matrix is also studied. The condensate fraction, extracted from the asymptotic behavior of the one-body density matrix, shows an unambiguous enhancement when approaching the surface.Comment: RevTex, 11 pages, accepted in Phys. Rev.

    Quantum Rotation of HCN and DCN in Helium-4

    Full text link
    We present calculations of rotational absorption spectra of the molecules HCN and DCN in superfluid helium-4, using a combination of the Diffusion Monte Carlo method for ground state properties and an analytic many-body method (Correlated Basis Function theory) for the excited states. Our results agree with the experimentally determined effective moment of inertia which has been obtained from the J=01J=0\to 1 spectral transition. The correlated basis function analysis shows that, unlike heavy rotors such as OCS, the J=2 and higher rotational excitations of HCN and DCN have high enough energy to strongly couple to rotons, leading to large shifts of the lines and accordingly to anomalous large spectroscopic distortion constants, to the emergence of roton-maxon bands, and to secondary peaks in the absorption spectra for J=2 and J=3.Comment: accepted by Phys. Rev. B; changes: included referee suggestions, removed typos, added 10 ref
    corecore