98 research outputs found

    CD40 Ligand and Autoantigen Are Involved in the Pathogenesis of Low-Grade B-Cell Lymphomas of Mucosa-Associated Lymphoid Tissue

    Get PDF
    Low-grade MALT-type lymphomas are malignancies of mucosal marginal-zone B cells and preceded by reactive inflammatory lymphoid tissue. Experimental observations suggest that antigen and CD40 Ligand act during cognate T/B cell interaction and are crucial for germinal center B-cell maturation generating marginal-zone B cells. To investigate the mechanisms underlying the development of extranodal MALT-type lymphomas, the immunoglobulin receptor was sequenced and analyzed for antigen specificity using heterohybridoma technology. Furthermore, CD40 ligand expression was evaluated by immunohistochemistry and by semiquantitative RT-PCR, and ligand binding to the CD40 of tumor B cells was studied using the CD40 system. Hypermutations were found in low-grade lymphomas throughout CDR1- CDR3 suggestive of positive selection through their antigen receptor. Different VH families were used and more than 69% of tumor immunoglobulins bound different mucosal antigens. CD40L expression was found in the tumor marginal zone in substantial amounts. The in vitro proliferation response of all low-grade MALT-type lymphomas was dependent on anti-CD40- mediated signals and cytokines. Our data provide evidence that autoantigen as well as the CD40L expressed by activated nonneoplastic T cells may drive the evolution of low-grade MALT-type lymphomas either directly or by paracrine mechanisms and that antigen may contribute to lymphoma pathogenesis

    Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells

    Get PDF
    Autoimmune diseases and other inflammatory conditions are characterized by large lymphocytic tissue infiltrates in which T and B cells can be found in close contact. Here, using a murine airway inflammation model, we compare antigen-specific T and B cells in lung tissue versus lung-draining lymph node. In the lung we identify a B-cell population exhibiting a classical germinal centre phenotype without being organized into ectopic lymphoid tissue. By contrast, classical CXCR5+ Bcl-6+ T follicular helper cells are not present. Nevertheless, lung-infiltrating T cells exhibit follicular helper-like properties including the potential to provide help to naive B cells. The lung tissue is also a survival niche for memory T and B cells remaining in residual peribronchial infiltrates after resolution of inflammation. Collectively, this study shows the importance of T/B cooperation not only in lymph nodes but also in inflamed peripheral tissues for local antibody responses to infection and autoimmunity

    Protective Effector Memory CD4 T Cells Depend on ICOS for Survival

    Get PDF
    Memory CD4 T cells play a vital role in protection against re-infection by pathogens as diverse as helminthes or influenza viruses. Inducible costimulator (ICOS) is highly expressed on memory CD4 T cells and has been shown to augment proliferation and survival of activated CD4 T cells. However, the role of ICOS costimulation on the development and maintenance of memory CD4 T cells remains controversial. Herein, we describe a significant defect in the number of effector memory (EM) phenotype cells in ICOS−/− and ICOSL−/− mice that becomes progressively more dramatic as the mice age. This decrease was not due to a defect in the homeostatic proliferation of EM phenotype CD4 T cells in ICOS−/− or ICOSL−/− mice. To determine whether ICOS regulated the development or survival of EM CD4 T cells, we utilized an adoptive transfer model. We found no defect in development of EM CD4 T cells, but long-term survival of ICOS−/− EM CD4 T cells was significantly compromised compared to wild-type cells. The defect in survival was specific to EM cells as the central memory (CM) ICOS−/− CD4 T cells persisted as well as wild type cells. To determine the physiological consequences of a specific defect in EM CD4 T cells, wild-type and ICOS−/− mice were infected with influenza virus. ICOS−/− mice developed significantly fewer influenza-specific EM CD4 T cells and were more susceptible to re-infection than wild-type mice. Collectively, our findings demonstrate a role for ICOS costimulation in the maintenance of EM but not CM CD4 T cells

    Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells

    Get PDF
    Cross-presentation of cellular antigens is crucial for priming CD8<sup>+</sup> T cells, and generating immunity to intracellular pathogens—particularly viruses. It is unclear which intestinal phagocytes perform this function in vivo. To address this, we examined dendritic cells (DCs) from the intestinal lymph of IFABP-tOVA 232-4 mice, which express ovalbumin in small intestinal epithelial cells (IECs). Among lymph DCs (LDCs) only CD103<sup>+</sup> CD11b<sup>−</sup> CD8α<sup>+</sup> DCs cross-present IEC-derived ovalbumin to CD8<sup>+</sup> OT-I T cells. Similarly, in the mesenteric lymph nodes (MLNs), cross-presentation of IEC–ovalbumin was limited to the CD11c<sup>+</sup> MHCII<sup>hi</sup> CD8α<sup>+</sup> migratory DCs, but absent from all other subsets, including the resident CD8α<sup>hi</sup> DCs. Crucially, delivery of purified CD8α<sup>+</sup> LDCs, but not other LDC subsets, into the MLN subcapsular lymphatic sinus induced proliferation of ovalbumin-specific, gut-tropic CD8<sup>+</sup> T cells <i>in vivo</i>. Finally, in 232-4 mice treated with R848, CD8α<sup>+</sup> LDCs were uniquely able to cross-prime interferon γ-producing CD8<sup>+</sup>T cells and drive their migration to the intestine. Our results clearly demonstrate that migrating CD8α<sup>+</sup> intestinal DCs are indispensable for cross-presentation of cellular antigens and, in conditions of inflammation, for the initial differentiation of effector CD8<sup>+</sup> T cells. They may therefore represent an important target for the development of antiviral vaccinations

    The time course of speaker-specific language processing

    No full text
    Listeners are sensitive to a speaker's individual language use and generate expectations for particular speakers. It is unclear, however, how such expectations affect online language processing. In the present EEG study, we presented thirty-two participants with auditory sentence stimuli of two speakers. Speakers differed in their use of two particular syntactic structures, easy subject-initial SOV structures and more difficult object-initial OSV structures. One speaker, the SOV-Speaker, had a high proportion of SOV sentences (75%) and a low proportion of OSV sentences (25%), and vice-versa for the OSV-Speaker. Participants were exposed to the speakers' individual language use in a training session followed by a test session on the consecutive day. ERP-results show that early stages of sentence processing are driven by syntactic processing only and are unaffected by speaker-specific expectations. In a late stage, however, an interaction between speaker and syntax information was observed. For the SOV-Speaker condition, the classical P600-effect reflected the effort of processing difficult and unexpected sentence structures. For the OSV-Speaker condition, both structures elicited different responses on frontal electrodes, possibly indexing effort to switch from a local speaker model to a global model of language use. Overall, the study identifies distinct neural mechanisms related to speaker-specific expectations. (c) 2021 Elsevier Ltd. All rights reserved

    Swiprosin 1 – regulator of proximal BCR signaling

    No full text

    Zum Problem des Emissionsmechanismus von Oxydkathoden

    No full text
    • …
    corecore