1,973 research outputs found

    WiBACK: A back-haul network architecture for 5G networks

    Get PDF
    Recently both academic and industry worlds has started to define the successor of Long Term Evolution (LTE), so-called 5G networks, which will most likely appear by the end of the decade. It is widely accepted that those 5G networks will have to deal with significantly more challenging requirements in terms of provided bandwidth, latency and supported services. This will lead to not only modifications in access and parts of core networks, but will trigger changes throughout the whole network, including the Back-haul segment. In this work we present our vision of a 5G Back-haul network and identify the associated challenges. We then describe our Wireless Backhaul (WiBACK) architecture, which implements Software Defined Network (SDN) concepts and further extends them into the wireless domain. Finally we present a brief overview of our pilot installations before we conclude.This work has been supported by the BATS research project which is funded by the European Union Seventh Framework Programme under contract n317533

    Absorptive capacity components

    Get PDF

    Towards QoS-aware load distribution in heterogeneous networks

    Get PDF
    Enabling broadband internet connectivity of 30 mbps and more is an ambiguous goal of the European Digital Agenda, particularly in rural and remote regions. Not relying on a single access technology but using multiple simultaneously is believed to be a promising option to meet this objective. However, simply using the available connections in parallel and distributing traffic arbitrarily among them despite their different characteristics might still lead to an unacceptable service quality due to the heterogeneity. Instead, methods that are sophisticated are required, which on one hand takes the Quality-of-Service (QoS) requirements of the various applications into account and on the other hand is aware of the different network characteristics. In this work, we discuss the main challenges which occur when utilizing multiple access technologies in parallel and we propose an architecture addressing those issues. Moreover, we present some preliminary validation results, which show the benefit of our approach.The BATS research project which is funded by the European Union Seventh Framework Programme under contract n31753

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533

    Prevalence of overweight among Dutch primary school children living in JOGG and non-JOGG areas

    Get PDF
    BACKGROUND: One of the most influential integrated approaches towards reducing childhood obesity is EPODE, a program that has been translated to over 20 different countries worldwide. AIM: The goal of this study was to explore how JOGG–the Dutch EPODE adaptation–might reduce overweight prevalence among children. METHODS: To compare whether overweight prevalence was different in JOGG areas vs. non-JOGG areas, in long-term JOGG areas vs. short-term JOGG areas, and in low SES JOGG areas vs. middle/high SES JOGG areas, secondary anthropometric and personal data of 209,565 Dutch children were mapped onto publicly available JOGG data. RESULTS: Findings showed that overweight prevalence decreased from 25.17% to 16.08% in JOGG-areas, and from 32.31% to 18.43% in long-term JOGG areas. However, when taking into account SES, the decrease in prevalence was mainly visible in low SES long-term JOGG areas. CONCLUSION: JOGG appeared to be successful in targeting areas where overweight was most prevalent. Low SES areas that had implemented JOGG for a longer period of time, i.e., six years, appeared to be successful in decreasing overweight prevalence

    Noise Impacts from Professional Dog Grooming Forced-Air Dryers

    Get PDF
    This study was designed to measure the sound output of four commonly used brands of forced-air dryers used by dog groomers in the United States. Many dog groomers have questions about the effect of this exposure on their hearing, as well as on the hearing of the dogs that are being groomed. Readings taken from each dryer at 1 meter (the likely distance of the dryer from the groomer and the dog) showed average levels ranging from 105.5 to 108.3 dB SPL or 94.8 to 108.0 dBA. Using the 90 dBA criterion required by the US Occupational Safety and Health Administration, dog groomers/bathers are at risk if exposure to the lowest intensity dryer (94.8 dBA) exceeds 4 hours per day. If the more stringent 85 dBA criterion and 3 dB tradeoff is applied, less than one hour of exposure is permissible in an 8 hour day. Cautions are recommended for any persons exposed to noise from forced-air dryers

    INTEGRAL/SPI Îł -ray line spectroscopy : Response and background characteristics

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors.Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background.Methods. We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors.Results. Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.Peer reviewedFinal Published versio

    A highly efficient titanium-based olefin polymerisation catalyst with a monoanionic iminoimidazolidide pi-donor ancillary ligand

    Get PDF
    The titanium complex Cp[1,3-(2',6' Me2C6H3) (2)(CH2N)(2)C=N] Ti(CH2Ph)(2), with a monoanionic eta(1)-iminoimidazolidide ancillary ligand, is shown to be a highly efficient catalyst for olefin polymerisation when activated with the Lewis acid B(C6F5)(3)

    Isolated vertebral fractures give elevated serum protein S-100B levels

    Get PDF
    ABSTRACT: BACKGROUND: Serum protein S-100B determinations have been widely proposed in the past as markers of traumatic brain injury and used as a predictor of injury severity and outcome. The purpose of this prospective observational case series was therefore to determine S-100B serum levels in patients with isolated injuries to the back. METHODS: Between 1 February and 1 May 2008, serum samples for S-100B analysis were obtained within 1 hour of injury from 285 trauma patients. All patients with a head injury, polytrauma, and intoxicated patients were excluded to select isolated injuries to the spine. 19 patients with isolated injury of the back were included. Serum samples for S-100B analysis and CT spine were obtained within 1 hours of injury. RESULTS: CT scans showed vertebral fractures in 12 of the 19 patients (63%). All patients with fractures had elevated S-100B levels. Amongst the remaining 7 patients without a fracture, only one patient with a severe spinal contusion had an S-100B concentration above the reference limit. The mean S-100B value of the group with fractures was more than 4 times higher than in the group without fractures (0.385 vs 0.087 mug/L, p = 0.0097). CONCLUSION: Our data, although limited due to a very small sample size, suggest that S-100B serum levels might be useful for the diagnosis of acute vertebral body and spinal cord injury with a high negative predictive power. According to the literature, the highest levels of serum S-100B are found when large bones are fractured. If a large prospective study confirms our findings, determining the S-100B level may contribute to more selective use of CT and MRI in spinal trauma
    • …
    corecore