43 research outputs found

    Genomic Signatures of Strain Selection and Enhancement in Bacillus atrophaeus var. globigii, a Historical Biowarfare Simulant

    Get PDF
    (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the “military” isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of “military” isolates on lactate-containing media, and showed that the “military” strains exhibited a hypersporulating phenotype.Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation

    Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico

    Get PDF
    Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen

    Genetic Diversity of the 2009 Plague Isolates.

    No full text
    <p>Distribution of mutations through the 2009 isolates. Mutations relative to the parent strain (CO92) are indicated by black squares. Grey squares indicate that the mutation was not called automatically but was evident by manual inspection of the assembly. Mutation 31 from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031604#pone-0031604-t002" target="_blank">Table 2</a> is not shown nor incorporated into the phylogeny as it is an expansion of a 10 bp repeating sequence.</p

    IS Element Variation Between Strains.

    No full text
    <p>*<i>pldA/IS100</i> chimeric reads are present in a subset of 25% of reads that map to this position (See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031604#pone.0031604.s002" target="_blank">Figure S2</a>). The remainder of the reads corresponded to an intact <i>pldA</i> gene.</p

    Identification of New IS Element Insertion Points in 2009 Strains.

    No full text
    <p><b>A</b>) Locations of new IS element insertions. IS element insertions were identified in templated assembly experiments using CO92 as a reference. New insertion points were identified using Newbler's 454HCStructVars.txt file and the identity of the newly inserted element was determined by BLAST analysis of sequence reads containing novel junctions. Shaded square indicates the presence of an IS element beginning at the indicated nucleotide position. <b>B</b>) Phylogenetic analysis of 2009 strains using Maximum Likelihood method. Each insertion was treated as a single character. <b>C</b>) Phylogenetic analysis using Maximum Parsimony method.</p

    Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1β (IL-1β), we expected that IL-1β KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1β release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1β added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1β could diminish survival in GVHD. However, loss of inflammasome activation and IL-1β release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1β signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments
    corecore