3,415 research outputs found

    Glassy dynamics in thin films of polystyrene

    Full text link
    Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.Comment: 7 pages, 7 figures. Phys. Rev. E (in press

    Nanoscale Phenomenology from Visualizing Pair Formation Experiment

    Full text link
    Recently, Gomes et al. [1] have visualized the gap formation in nanoscale regions (NRs) above the critical temperature T_c in the high-T_c superconductor Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers, the NRs expand in the bulk superconducting state consisted of inhomogeneities. The fact that the size of the inhomogeneity [2] is close to the minimal size of the NR [1] leads to a conclusion that the superconducting phase is a result of these overlapped NRs. In the present paper we perform the charge and percolation regime analysis of NRs and show that at the first critical doping x_{c1}, when the superconductivity starts on, each NR carries the positive electric charge one in units of electron charge, thus we attribute the NR to a single hole boson, and the percolation lines connecting these bosons emerge. At the second critical doping x_{c2}, when the superconductivity disappears, our analysis demonstrates that the charge of each NR equals two. The origin of x_{c2} can be understood by introducing additional normal phase hole fermions in NRs, whose concentration appearing above x_{c1} increases smoothly with the doping and breaks the percolation lines of bosons at x_{c2}. The last one results in disappearing the bulk bosonic property of the pseudogap (PG) region, which explains the upper bound for existence of vortices in Nernst effect [3]. Since [1] has demonstrated the absence of NRs at the PG boundary one can conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published journal paper. Added 4 new references. Section of arXiv: 1010.043

    Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence

    Get PDF
    Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted

    Chaos and its quantization in dynamical Jahn-Teller systems

    Full text link
    We investigate the EgegE_g \otimes e_g Jahn-Teller system for the purpose to reveal the nature of quantum chaos in crystals. This system simulates the interaction between the nuclear vibrational modes and the electronic motion in non-Kramers doublets for multiplets of transition-metal ions. Inclusion of the anharmonic potential due to the trigonal symmetry in crystals makes the system nonintegrable and chaotic. Besides the quantal analysis of the transition from Poisson to Wigner level statistics with increasing the strength of anharmonicity, we study the effect of chaos on the electronic orbital angular momentum and explore the magnetic gg-factor as a function of the system's energy. The regular oscillation of this factor changes to a rapidly-decaying irregular oscillation by increasing the anharmonicity (chaoticity).Comment: 8 pages, 6 figure

    Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and delta aminolevulinic acid sensitisation

    Get PDF
    Background and aims-Laser induced fluorescence (LIF) from colonic mucosa was measured in vivo with and without delta aminolevulinic acid (ALA) in an attempt to differentiate between neoplasia and non-neoplasia in real time during colonoscopy. Methods-Spectra from 32 adenomas, 68 normal sites, and 14 hyperplastic polyps in 41 patients were obtained with a point monitoring system. Twenty one of the patients had been given a low dose of ALA as a photosensitiser before the examination. Light of 337, 405, or 436 nm wavelength was used as excitation. Stepwise multivariate Linear regression analysis was performed. Results-With 337 nm excitation, 100% sensitivity and 96% specificity was obtained between normal mucosa and adenomas. Seventy seven per cent of the hyperplastic polyps were classified as non-neoplastic. When exciting with 405 and 436 nm, the possibility of distinguishing different types of tissue was considerably better in the ALA patients than in the non-ALA patients. Conclusions-The in vivo point measurements imply that a good discrimination between normal tissue and adenomatous polyps can be obtained using the LIF technique. Excitation at 337 nm and at 405 nm or 436 nm using ALA gives good results. LIF also shows potential for distinguishing adenomatous from hyperplastic polyps. The number of detection wavelengths could be reduced if chosen properly

    Weak-Coupling Theory for Multiband Superconductivity Induced by Jahn-Teller Phonons

    Full text link
    Emergence of superconductivity in a two-band system coupled with breathing and Jahn-Teller phonons is discussed in a weak-coupling limit. With the use of a standard quantum mechanical procedure, the phonon-mediated attraction is derived. From the analysis of the model including such attraction, a BCS-like formula for a superconducting transition temperature TcT_{\rm c} is obtained. When only the breathing phonon is considered, TcT_{\rm c} is the same as that of the one-band model. On the other hand, when Jahn-Teller phonons are active, TcT_{\rm c} is significantly enhanced by the interband attraction even within the weak-coupling limit. Relevance of the present result to actual materials such as iron pnictides is briefly commented.Comment: 4 pages, 3 figures

    Evaluation of the clinical value of bone metabolic parameters for the screening of osseous metastases compared to bone scintigraphy

    Get PDF
    BACKGROUND: Bone metastases are common in many types of cancer. As screening methods different imaging modalities are available. A new approach for the screening of osseous metastases represents the measurement of bone metabolic markers. Therefore aim of this study was to evaluate the usefulness of the determination of bone metabolic markers aminoterminal propeptide of type I procollagen (PINP, osteoblastic activity) and the carboxyterminal pyridinoline cross-linked telopeptide of type I collagen (ICTP, osteoclastic activity) for the detection of bone metastases associated with other malignancies. METHODS: 88 patients aged 21 – 82 years with malignant tumors were prospectively studied. The serum concentrations of PINP and ICTP were measured and compared to the results of bone scintigraphy, radiological bone series, CT, MRI and clinical follow-up. RESULTS: Osseous metastases were found in 21 patients. 19 of them were correctly identified by bone scintigraphy (sensitivity: 90%). For bone metabolic markers results were as follows: ICTP sensitivity: 71%, specificity: 42%; PINP sensitivity: 24%, specificity: 96%. CONCLUSIONS: As markers of bone metabolism PINP and ICTP showed low sensitivity and/or specificity for the detection of osseous metastases. The presented markers did not seem to be sufficient enough to identify patients with bone metastases or to replace established screening methods

    ESR investigation on the Breather mode and the Spinon-Breather dynamical crossover in Cu Benzoate

    Full text link
    A new elementary-excitation, the so called "breather excitation", is observed directly by millimeter-submillimeter wave electron spin resonance (ESR) in the Heisenberg quantum spin-chain Cu benzoate, in which a field-induced gap is found recently by specific heat and neutron scattering measurements. Distinct anomalies were found in line width and in resonance field around the "dynamical crossover" regime between the gap-less spinon-regime and the gapped breather-regime. When the temperature becomes sufficiently lower than the energy gap, a new ESR-line with very narrow line-width is found, which is the manifestation of the breather excitation. The non-linear field dependence of the resonance field agrees well with the theoretical formula of the first breather-excitation proposed by Oshikawa and Affleck. The present work establishes experimentally for the first time that a sine-Gordon model is applicable to explain spin dynamics in a S=1/2 Heisenberg spin chain subjected to staggered field even in high fields.Comment: Revtex, 4 pages, 4 figures, submitted to Phys. Rev. Let
    corecore