11 research outputs found

    TFOS: Unique challenges and unmet needs for the management of ocular surface diseases throughout the world

    No full text
    The mission of the Tear Film & Ocular Surface Society (TFOS) is to advance the research, literacy, and educational aspects of the scientific field of the tear film and ocular surface. Fundamental to fulfilling this mission is the TFOS Global Ambassador program. TFOS Ambassadors are dynamic and proactive experts, who help promote TFOS initiatives, such as presenting the conclusions and recommendations of the recent TFOS DEWS IIā„¢, throughout the world. They also identify unmet needs, and propose future clinical and scientific solutions, for management of ocular surface diseases in their countries. This meeting report addresses such needs and solutions for 25 European countries, as detailed in the TFOS European Ambassador meeting in Rome, Italy, in September 2019

    Mechanisms of non-canonical signaling in health and disease: Diversity to take therapy up a notch?

    No full text
    Non-canonical Notch signaling encompasses a wide range of cellular processes, diverging considerably from the established paradigm. It can dispense of ligand, proteolytic or nuclear activity. Non-canonical Notch signaling events have been studied mostly in the fruit fly Drosophila melanogaster, the organism in which Notch was identified first and a powerful model for understanding signaling outcomes. However, non-canonical events are ill-defined and their involvement in human physiology is not clear, hampering our understanding of diseases arising from Notch signaling alterations. At a time in which therapies based on specific targeting of Notch signaling are still an unfulfilled promise, detailed understanding of non-canonical Notch events might be key to devising more specific and less toxic pharmacologic options. Based on the blueprint of non-canonical signaling in Drosophila, here, we review and rationalize current evidence about non-canonical Notch signaling. Our effort might inform Notch biologists developing new research avenues and clinicians seeking future treatment of Notch-dependent diseases
    corecore