4,031 research outputs found

    Phonons in intrinsic Josephson systems with parallel magnetic field

    Full text link
    Subgap resonances in the I-V curves of layered superconductors are explained by the coupling between Josephson oscillations and phonons with dispersion in c-direction. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.Comment: Invited Paper to the "2nd International Symposium on Intrinsic Josephson Effects and Plasma Oscillations in High-Tc Superconductors", 22-24 August 2000, Sendai, Japan, to be published in Physica

    Distribution of a Generic Mission Planning and Scheduling Toolkit for Astronomical Spacecraft

    Get PDF
    Work is progressing as outlined in the proposal for this contract. A working planning and scheduling system has been documented and packaged and made available to the WIRE Small Explorer group at JPL, the FUSE group at JHU, the NASA/GSFC Laboratory for Astronomy and Solar Physics and the Advanced Planning and Scheduling Branch at STScI. The package is running successfully on the WIRE computer system. It is expected that the WIRE will reuse significant portions of the SWAS code in its system. This scheduling system itself was tested successfully against the spacecraft hardware in December 1995. A fully automatic scheduling module has been developed and is being added to the toolkit. In order to maximize reuse, the code is being reorganized during the current build into object-oriented class libraries. A paper describing the toolkit has been written and is included in the software distribution. We have experienced interference between the export and production versions of the toolkit. We will be requesting permission to reprogram funds in order to purchase a standalone PC onto which to offload the export version

    Simulation of I-V Hysteresis Branches in An Intrinsic Stack of Josephson Junctions in High TcT_c Superconductors

    Full text link
    I-V characteristics of the high Tc_c superconductor Bi2_2Sr2_2Ca1_1C2_2O8_8 shows a strong hysteresis, producing many branches. The origin of hysteresis jumps is studied by use of the model of multi-layered Josephson junctions proposed by one of the authors (T. K.). The charging effect at superconducting layers produces a coupling between the next nearest neighbor phase-differences, which determines the structure of hysteresis branches. It will be shown that a solution of phase motions is understood as a combination of rotating and oscillating phase-differences, and that, at points of hysteresis jumps, there occurs a change in the number of rotating phase-differences. Effects of dissipation are analyzed. The dissipation in insulating layers works to damp the phase motion itself, while the dissipation in superconducting layers works to damp relative motions of phase-differences. Their effects to hysteresis jumps are discussed.Comment: 18 pages, Latex, 8 figures. To be appear in Phys.Rev.B Vol.60(1999

    Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO

    Get PDF
    We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle tunneling spectra of thin film grain-boundary Josephson junctions made of the electron doped cuprate superconductor LaCeCuO. An applied magnetic field reduces the spectral weight around zero energy and shifts it non-linearly to higher energies consistent with a Doppler shift of the Andreev bound states (ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the onset of superconductivity. These observations strongly suggest that the ZBCP results from the formation of ABS at the junction interfaces, and, consequently, that there is a sign change in the symmetry of the superconducting order parameter of this compound consistent with a d-wave symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys. Rev.

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure

    Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments

    Get PDF
    Josephson junctions with ferromagnetic barrier can have positive or negative critical current depending on the thickness dFd_F of the ferromagnetic layer. Accordingly, the Josephson phase in the ground state is equal to 0 (a conventional or 0 junction) or to π\pi (π\pi junction). When 0 and π\pi segments are joined to form a "0-π\pi junction", spontaneous supercurrents around the 0-π\pi boundary can appear. Here we report on the visualization of supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS) junctions by low-temperature scanning electron microscopy (LTSEM). We discuss data for rectangular 0, π\pi, 0-π\pi, 0-π\pi-0 and 20 \times 0-π\pi junctions, disk-shaped junctions where the 0-π\pi boundary forms a ring, and an annular junction with two 0-π\pi boundaries. Within each 0 or π\pi segment the critical current density is fairly homogeneous, as indicated both by measurements of the magnetic field dependence of the critical current and by LTSEM. The π\pi parts have critical current densities jcπj_c^\pi up to 35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology is capable to produce Josephson devices with a unique topology of the 0-π\pi boundary.Comment: 29 pages, 8 figure

    Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier

    Get PDF
    We have realized multifacet Josephson junctions with periodically alternating critical current density (MJJs) using superconductor-insulator-ferromagnet-superconductor heterostructures. We show that anomalous features of critical current vs. applied magnetic field, observed also for other types of MJJs, are caused by a non-uniform flux density (parallel to the barrier) resulting from screening currents in the electrodes in the presence of a (parasitic) off-plane field component.Comment: submitted to PR
    • …
    corecore