205 research outputs found

    Greenberger-Horne-Zeilinger States in Quantum Dot Molecule

    Full text link
    We present a microscopic theory of a lateral quantum dot molecule in a radial magnetic field with a Greenberger- Horne- Zeilinger (GHZ) maximally entangled three particle groundstate. The quantum dot molecule consists of three quantum dots with one electron spin each forming a central equilateral triangle. The anti-ferromagnetic spin-spin interaction is changed to the ferromagnetic interaction by additional doubly occupied quantum dots, one dot near each side of a triangle. The magnetic field is provided by micro-magnets. The interaction among the electrons is described within an extended Hubbard Hamiltonian and electronic states are obtained using configuration interaction approach. The set of parameters is established for which the ground state of the molecule in a radial magnetic field is well approximated by a GHZ state.Comment: 8 pages, 7 figures. Accepted for publication in PR

    Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses

    Get PDF
    Cu doped chalcogenide (ChG) glassy films in the As-Se-Te glass system have been prepared using thermal evaporation techniques. Single-source evaporation from bulk (1-x) As(0.40)Se(0.35)Te(0.25)+x Cu glasses with x=0.05, 0.075, 0.10, 0.125, and 0.15, as well as dual-source coevaporation from As-chalcogenide and Cu-chalcogenide binary glasses as source materials, has been explored. We have shown that it is not possible to deposit high concentration Cu doped ChG glassy films, from the Cu doped bulk samples using single-source evaporation. However, using the dual-source coevaporation technique, we have demonstrated that the films can be doped with high concentrations of Cu. Micro-Raman spectroscopy has been utilized to verify that Cu is introduced into the glass network without disrupting the basic As-chalcogen units. Optical measurements have shown that introduction of Cu decreases the band gap of As-Se-Te glasses. The electrical properties of the investigated films have been measured at different temperatures and it has been shown that Cu incorporation in the As-Se-Te glass system vastly improves electrical conductivity. Moreover, we have shown that the temperature dependence of electrical conductivity can be fitted assuming variable range hopping between states near the Fermi level

    Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana

    Get PDF
    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells

    Get PDF
    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient’s tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient’s tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A), three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG) and one PCDH15 (c.3717+2dupTT) variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects

    The role of noise and positive feedback in the onset of autosomal dominant diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant (AD) diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology.</p> <p>Results</p> <p>First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY) were simulated and the results are compared to known disease characteristics.</p> <p>Conclusions</p> <p>By identifying the intrinsic mechanisms involved in the onset of AD diseases, it may be possible to better assess risk factors as well as lead to potential new drug targets. To illustrate the applicability of this study of pathway dynamics, we simulated the primary pathways involved in two autosomal dominant diseases, Polycystic Kidney Disease (PKD) and mature onset diabetes of youth (MODY). Simulations demonstrate that some of the primary disease characteristics are consistent with the positive feedback - stochastic variation theory presented here. This has implications for new drug targets to control these diseases by blocking the positive feedback loop in the relevant pathways.</p
    corecore