221 research outputs found

    Time resolved study of recoil induced rotation by X ray pump X ray probe spectroscopy

    Get PDF
    Modern stationary X ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time resolved two color X ray pump probe spectroscopy with picosecond resolution for real time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time delayed short probe X ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X ray pump probe spectroscopy of the recoil induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time dependent X ray absorption using the CO molecule as a case study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamic

    Acute effects of nicotine on visual search tasks in young adult smokers

    Get PDF
    Rationale Nicotine is known to improve performance on tests involving sustained attention and recent research suggests that nicotine may also improve performance on tests involving the strategic allocation of attention and working memory. Objectives We used measures of accuracy and response latency combined with eye-tracking techniques to examine the effects of nicotine on visual search tasks. Methods In experiment 1 smokers and non-smokers performed pop-out and serial search tasks. In experiment 2, we used a within-subject design and a more demanding search task for multiple targets. In both studies, 2-h abstinent smokers were asked to smoke one of their own cigarettes between baseline and tests. Results In experiment 1, pop-out search times were faster after nicotine, without a loss in accuracy. Similar effects were observed for serial searches, but these were significant only at a trend level. In experiment 2, nicotine facilitated a strategic change in eye movements resulting in a higher proportion of fixations on target letters. If the cigarette was smoked on the first trial (when the task was novel), nicotine additionally reduced the total number of fixations and refixations on all letters in the display. Conclusions Nicotine improves visual search performance by speeding up search time and enabling a better focus of attention on task relevant items. This appears to reflect more efficient inhibition of eye movements towards task irrelevant stimuli, and better active maintenance of task goals. When the task is novel, and therefore more difficult, nicotine lessens the need to refixate previously seen letters, suggesting an improvement in working memory

    The neural correlates of inner speech defined by voxel-based lesion–symptom mapping

    Get PDF
    The neural correlates of inner speech have been investigated previously using functional imaging. However, methodological and other limitations have so far precluded a clear description of the neural anatomy of inner speech and its relation to overt speech. Specifically, studies that examine only inner speech often fail to control for subjects’ behaviour in the scanner and therefore cannot determine the relation between inner and overt speech. Functional imaging studies comparing inner and overt speech have not produced replicable results and some have similar methodological caveats as studies looking only at inner speech. Lesion analysis can avoid the methodological pitfalls associated with using inner and overt speech in functional imaging studies, while at the same time providing important data about the neural correlates essential for the specific function. Despite its advantages, a study of the neural correlates of inner speech using lesion analysis has not been carried out before. In this study, 17 patients with chronic post-stroke aphasia performed inner speech tasks (rhyme and homophone judgements), and overt speech tasks (reading aloud). The relationship between brain structure and language ability was studied using voxel-based lesion–symptom mapping. This showed that inner speech abilities were affected by lesions to the left pars opercularis in the inferior frontal gyrus and to the white matter adjacent to the left supramarginal gyrus, over and above overt speech production and working memory. These results suggest that inner speech cannot be assumed to be simply overt speech without a motor component. It also suggests that the use of overt speech to understand inner speech and vice versa might result in misleading conclusions, both in imaging studies and clinical practice

    Effect of apomorphine on cognitive performance and sensorimotor gating in humans

    Get PDF
    Contains fulltext : 88792.pdf (publisher's version ) (Closed access)INTRODUCTION: Dysfunction of brain dopamine systems is involved in various neuropsychiatric disorders. Challenge studies with dopamine receptor agonists have been performed to assess dopamine receptor functioning, classically using the release of growth hormone (GH) from the hindbrain as primary outcome measure. The objective of the current study was to assess dopamine receptor functioning at the forebrain level. METHODS: Fifteen healthy male volunteers received apomorphine sublingually (2 mg), subcutaneously (0.005 mg/kg), and placebo in a balanced, double-blind, cross-over design. Outcome measures were plasma GH levels, performance on an AX continuous performance test, and prepulse inhibition of the acoustic startle. The relation between central outcome measures and apomorphine levels observed in plasma and calculated in the brain was modeled using a two-compartmental pharmacokinetic-pharmacodynamic analysis. RESULTS: After administration of apomorphine, plasma GH increased and performance on the AX continuous performance test deteriorated, particularly in participants with low baseline performance. Apomorphine disrupted prepulse inhibition (PPI) on high-intensity (85 dB) prepulse trials and improved PPI on low intensity (75 dB) prepulse trials, particularly in participants with low baseline PPI. High cognitive performance at baseline was associated with reduced baseline sensorimotor gating. Neurophysiological measures correlated best with calculated brain apomorphine levels after subcutaneous administration. CONCLUSION: The apomorphine challenge test appears a useful tool to assess dopamine receptor functioning at the forebrain level. Modulation of the effect of apomorphine by baseline performance levels may be explained by an inverted U-shape relation between prefrontal dopamine functioning and cognitive performance, and mesolimbic dopamine functioning and sensorimotor gating. Future apomorphine challenge tests preferentially use multiple outcome measures, after subcutaneous administration of apomorphine.1 januari 201

    Neurotensin Receptor 1 Gene (NTSR1) Polymorphism Is Associated with Working Memory

    Get PDF
    BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators

    Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels

    Full text link
    Schizophrenia patients exhibit deficits in sensory gating as indexed by reduced prepulse inhibition (PPI) and P50 suppression, which have been linked to psychotic symptom formation and cognitive deficits. Although recent evidence suggests that atypical antipsychotics might be superior over typical antipsychotics in reversing PPI and P50 suppression deficits not only in schizophrenia patients, but also in healthy volunteers exhibiting low levels of PPI, the impact of typical antipsychotics on these gating measures is less clear. To explore the impact of the dopamine D2-like receptor system on gating and cognition, the acute effects of haloperidol on PPI, P50 suppression, and cognition were assessed in 26 healthy male volunteers split into subgroups having low vs high PPI or P50 suppression levels using a placebo-controlled within-subject design. Haloperidol failed to increase PPI in subjects exhibiting low levels of PPI, but attenuated PPI in those subjects with high sensorimotor gating levels. Furthermore, haloperidol increased P50 suppression in subjects exhibiting low P50 gating and disrupted P50 suppression in individuals expressing high P50 gating levels. Independently of drug condition, high PPI levels were associated with superior strategy formation and execution times in a subset of cognitive tests. Moreover, haloperidol impaired spatial working memory performance and planning ability. These findings suggest that dopamine D2-like receptors are critically involved in the modulation of P50 suppression in healthy volunteers, and to a lesser extent also in PPI among subjects expressing high sensorimotor gating levels. Furthermore, the results suggest a relation between sensorimotor gating and working memory performance

    An investigation into aripiprazole's partial D(2) agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers

    Get PDF
    Rationale: Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory. Objectives: We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole’s prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole’s unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone. Method: A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning. Results: Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d’) and speeded reaction times. In contrast to aripiprazole’s neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d’ and additionally had reduced errors of commission compared with placebo. Conclusion: Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone’s serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade
    corecore