9,665 research outputs found

    The improper infinite derivatives of Takagi's nowhere-differentiable function

    Get PDF
    Let T be Takagi's continuous but nowhere-differentiable function. Using a representation in terms of Rademacher series due to N. Kono, we give a complete characterization of those points where T has a left-sided, right-sided, or two-sided infinite derivative. This characterization is illustrated by several examples. A consequence of the main result is that the sets of points where T'(x) is infinite have Hausdorff dimension one. As a byproduct of the method of proof, some exact results concerning the modulus of continuity of T are also obtained.Comment: 16 page

    B meson light-cone wavefunctions in the heavy quark limit

    Get PDF
    We present a systematic study of the B meson light-cone wavefunctions in QCD in the heavy-quark limit. We construct model-independent formulae for the light-cone wavefunctions in terms of independent dynamical degrees of freedom, which exactly satisfy the QCD equations of motion and constraints from heavy-quark symmetry. The results demonstrate novel behaviors of longitudinal as well as transverse momentum distribution in the B mesons.Comment: 5 pages LaTeX, 1 style file. Talk presented at RADCOR/Loops and Legs 2002, Kloster Banz, Germany, September 8-13, 200

    Novel ordering of the pyrochlore Heisenberg antiferromagnet with the ferromagnetic next-nearest-neighbor interaction

    Full text link
    The ordering property of the classical pyrochlore Heisenberg antiferromagnet with the ferromagnetic next-nearest-neighbor interaction is investigated by means of a Monte Carlo simulation. The model is found to exhibit a first-order transition at a finite temperature into a peculiar ordered state. While the spin structure factor, i.e., the thermal average of the squared Fourier amplitude of the spin, exhibits a finite long-range order characterized by the commensurate spin order of the period four, the thermal average of the spin itself almost vanishes. It means that, although the amplitude of the spin Fourier component is long-range ordered, the associated phase degree of freedom remains to be fluctuating.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice

    Full text link
    Recent experiment on a honeycomb-lattice Heisenberg antiferromagnet (AF) Bi3_3Mn4_4O12_{12}(NO3_3) revealed a novel spin-liquid-like behavior down to low temperature, which was ascribed to the frustration effect due to the competition between the AF nearest- and next-nearest-neighbor interactions J1J_1 and J2J_2. Motivated by the experiment, we study the ordering of the J1J_1 -J2J_2 frustrated classical Heisenberg AF on a honeycomb lattice both by a low-temperature expansion and a Monte Carlo simulation. The model has been known to possess a massive degeneracy of the ground state, which, however, might be lifted due to thermal fluctuations leading to a unique ordered state, the effect known as 'order-by-disorder'. We find that the model exhibits an intriguing ordering behavior, particularly near the AF phase boundary. The energy scale of the order-by-disorder is suppressed there down to extremely low temperatures, giving rise to exotic spin-liquid states like a "ring-liquid" or a "pancake-liquid" state accompanied by the characteristic spin structure factor and the field-induced antiferromagnetism. We argue that the recent experimental data are explicable if the system is in such exotic spin-liquid states

    Nature of the vortex-glass order in strongly type-II superconductors

    Full text link
    The stability and the critical properties of the three-dimensional vortex-glass order in random type-II superconductors with point disorder is investigated in the unscreened limit based on a lattice {\it XY} model with a uniform field. By performing equilibrium Monte Carlo simulations for the system with periodic boundary conditions, the existence of a stable vortex-glass order is established in the unscreened limit. Estimated critical exponents are compared with those of the gauge-glass model.Comment: Error in the reported value of the exponent eta is correcte

    Ordering of the Heisenberg spin glass in two dimensions

    Full text link
    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbor Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behavior of the spin and the chirality correlation lengths. In order to observe the true asymptotic behavior, fairly large system size L\gsim 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than spin correlation length, whereas at lower temperatures below the crossover temperature T_\times, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T_\times to be \nu_SG=0.9+-0.2 and \nu_CG=2.1+-0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behavior realized below T_\times.Comment: to appear in a special issue of J. Phys.

    Periodicity and criticality in the Olami-Feder-Christensen model of earthquakes

    Full text link
    Characteristic versus critical features of earthquakes are studied on the basis of the Olami-Feder-Christensen model. It is found that the local recurrence-time distribution exhibits a sharp δ\delta-function-like peak corresponding to rhythmic recurrence of events with a fixed ``period'' uniquely determined by the transmission parameter of the model, together with a power-law-like tail corresponding to scale-free recurrence of events. The model exhibits phenomena closely resembling the asperity known in seismology

    Probing SO(10) symmetry breaking patterns through sfermion mass relations

    Full text link
    We consider supersymmetric SO(10) grand unification where the unified gauge group can break to the Standard Model gauge group through different chains. The breaking of SO(10) necessarily involves the reduction of the rank, and consequent generation of non-universal supersymmetry breaking scalar mass terms. We derive squark and slepton mass relations, taking into account these non-universal contributions to the sfermion masses, which can help distinguish between the different chains through which the SO(10) gauge group breaks to the Standard Model gauge group. We then study some implications of these non-universal supersymmetry breaking scalar masses for the low energy phenomenology.Comment: 13 pages, latex using revtex4, contains 2 figures, replaced with version accepted for publicatio

    Generating functional analysis of CDMA detection dynamics

    Get PDF
    We investigate the detection dynamics of the parallel interference canceller (PIC) for code-division multiple-access (CDMA) multiuser detection, applied to a randomly spread, fully syncronous base-band uncoded CDMA channel model with additive white Gaussian noise (AWGN) under perfect power control in the large-system limit. It is known that the predictions of the density evolution (DE) can fairly explain the detection dynamics only in the case where the detection dynamics converge. At transients, though, the predictions of DE systematically deviate from computer simulation results. Furthermore, when the detection dynamics fail to convergence, the deviation of the predictions of DE from the results of numerical experiments becomes large. As an alternative, generating functional analysis (GFA) can take into account the effect of the Onsager reaction term exactly and does not need the Gaussian assumption of the local field. We present GFA to evaluate the detection dynamics of PIC for CDMA multiuser detection. The predictions of GFA exhibits good consistency with the computer simulation result for any condition, even if the dynamics fail to convergence.Comment: 14 pages, 3 figure

    Squark and slepton masses as probes of supersymmetric SO(10) unification

    Full text link
    We carry out an analysis of the non-universal supersymmetry breaking scalar masses arising in SO(10) supersymmetric unification. By considering patterns of squark and slepton masses, we derive a set of sum rules for the sfermion masses which are independent of the manner in which SO(10) breaks to the Standard Model gauge group via its SU(5) subgroups. The phenomenology arising from such non-universality is unaffected by the symmetry breaking pattern, so long as the breaking occurs via any of the SU(5) subgroups of the SO(10) group.Comment: 15 pages using RevTe
    corecore