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Let T be Takagi’s continuous but nowhere-differentiable function. Using a representation
in terms of Rademacher series due to N. Kono [Acta Math. Hungar. 49 (1987) 315–324],
we give a complete characterization of those points where T has a left-sided, right-sided,
or two-sided infinite derivative. This characterization is illustrated by several examples.
A consequence of the main result is that the sets of points where T ′(x) = ±∞ have
Hausdorff dimension one. As a byproduct of the method of proof, some exact results
concerning the modulus of continuity of T are also obtained.
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1. Introduction

Takagi’s function is one of the simplest examples of a nowhere-differentiable continuous function. It was first discovered
in 1903 [5], and is defined by

T (x) =
∞∑

n=1

1

2n
φ(n)(x), 0 � x � 1,

where φ(1) := φ is the “tent map” defined by

φ(x) :=
{

2x, if 0 � x � 1/2,

2 − 2x, if 1/2 � x � 1;
and inductively, φ(n) := φ ◦ φ(n−1) for n � 2.

Takagi’s function was rediscovered independently by Van der Waerden, Hildebrandt, De Rham and others, and is known
alternatively as Van der Waerden’s function. Although T does not have a finite derivative anywhere, it is known to have
an improper infinite derivative at many points. At which points exactly this is the case appeared to be settled in 1936 by
Begle and Ayres [1]. Let O n be the number of zeros, and In = n − O n the number of ones, among the first n binary digits
of x, and let Dn = O n − In . Begle and Ayres claimed that T ′(x) = ∞ if Dn → ∞, and T ′(x) = −∞ if Dn → −∞. Unfortunately,
in their proof they considered only the case Dn → ∞, and only the right-hand derivative, believing the condition for
the left-hand derivative to be the same. It is not. In fact, Krüppel [4], unaware of Begle and Ayres’ paper, recently published
a counterexample to their claim, which we explain in Section 2 below.
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The main purpose of the present article, then, is to give a complete characterization of those points x at which T has an
improper infinite derivative. Guided by Krüppel’s counterexample, we replace the condition of Begle and Ayres by a stronger
condition, expressed in terms of the binary expansion of x. Since the condition we obtain is somewhat opaque, we illustrate
it with several examples. This is done in Section 3. The main result is proved in Section 4, using a representation in terms
of Rademacher series due to Kono [3]. In Section 5 we extend, with little extra effort, another recent result of Krüppel [4]
concerning the modulus of continuity of T .

2. Krüppel’s counterexample

The following example, which is essentially Example 7.2 of [4], shows that T ′(x) need not exist even if Dn → ∞. We
present the argument here in a somewhat different (and, we hope, easier to visualize) form. This section may be skipped
without loss of continuity. It does, however, lay down the basic idea upon which the proof of necessity in Section 4 is
based.

Let x = ∑∞
n=1 2−an , where an = 4n . For this x, we certainly have Dn → ∞. A well-known formula for T (x) at dyadic

rational points is

T

(
k

2m

)
= 1

2m

k−1∑
j=0

(m − 2s j), (1)

where s j is the number of ones in the binary representation of the integer j. (See [4, p. 44].) For given m, let k be the
integer such that k/2m < x < (k + 1)/2m . Then

T

(
k + 1

2m

)
− T

(
k

2m

)
= 1

2m
(m − 2sk) = 1

2m
Dm,

so the secant slopes over the dyadic intervals [k/2m, (k + 1)/2m] containing x indeed tend to +∞. However, if we put
m = an+1 − 1, then sk = n whereas sk−1 = n + an+1 − an − 2 and sk−2 = n + an+1 − an − 3. Thus, a simple calculation using
(1) yields

2m
[

T

(
k + 1

2m

)
− T

(
k − 2

2m

)]
= 3m − 2sk − 2sk−1 − 2sk−2

= 4an − an+1 − 6n + 7 → −∞,

as n → ∞. Since the intervals [(k − 2)/2m, (k + 1)/2m] also contain x, it follows that T cannot have an infinite derivative
at x.

It is easy to imagine how this idea can be extended for sequences {an} which do not grow quite as fast as 4n , by
enlarging the intervals even further to the left; that is, we can take the secant slopes over [(k − j)/2m, (k + 1)/2m] where
j = 3,4, . . . . In fact, we can even let j depend on m. It is essentially this realization that leads to the correct condition
for the existence of an improper derivative at a point x, as stated in the next section. But, since we wish to consider the
left-hand and right-hand derivatives separately, we will use a slightly different approach that does not make use of (1).

3. Improper derivatives

Define

T ′+(x) := lim
h↓0

T (x + h) − T (x)

h
,

T ′−(x) := lim
h↑0

T (x + h) − T (x)

h
,

provided each limit exists as an extended real number. It has been pointed out by various authors (e.g. [1,4]) that if x is a
dyadic rational (that is, a point of the form x = k/2m), then T ′+(x) = +∞ and T ′−(x) = −∞. We now treat the non-dyadic
case.

Theorem 3.1. Let x ∈ (0,1) be non-dyadic, and write

x =
∞∑

n=1

2−an , 1 − x =
∞∑

n=1

2−bn , (2)

where {an} and {bn} are strictly increasing sequences of positive integers, determined uniquely by x. Then:

(i) T ′+(x) = +∞ if and only if an − 2n → ∞.
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(ii) T ′−(x) = +∞ if and only if

an+1 − 2an + 2n − log2(an+1 − an) → −∞. (3)

(iii) T ′+(x) = −∞ if and only if

bn+1 − 2bn + 2n − log2(bn+1 − bn) → −∞. (4)

(iv) T ′−(x) = −∞ if and only if bn − 2n → ∞.

Corollary 3.2. In the notation of Theorem 3.1, we have:

(i) T ′(x) = +∞ if and only if (3) holds;
(ii) T ′(x) = −∞ if and only if (4) holds.

Proof. Putting δn := an+1 − an , the left-hand side of (3) can be written as δn − log2 δn − (an − 2n). Hence (3) implies that
an − 2n → ∞. This gives the first statement; the second follows by symmetry. �
Remark 3.3. The condition an − 2n → ∞ is equivalent to the condition of Begle and Ayres. First, if Dk → ∞, then an − 2n =
Dan → ∞. Conversely, suppose an − 2n → ∞. Then for an � k < an+1,

Dk = k − 2Ik = k − 2n � an − 2n → ∞.

Conditions (3) and (4), on the other hand, may look a bit mysterious. The examples below aim to provide more insight into
their meaning. Since the conditions are quite analogous, we focus on (3).

Example 3.4. If the number of consecutive zeros in the binary expansion of x is bounded, say by M , then an+1 −an � M + 1,
and so

an+1 − 2an + 2n − log2(an+1 − an) � M + 1 − (an − 2n).

Thus, we obtain Krüppel’s result [4, Proposition 5.3]: if Dn → ∞ and the number of consecutive 0’s in the binary expansion
of x is bounded, then T ′(x) = +∞. Similarly, if Dn → −∞ and the number of consecutive 1’s is bounded, then T ′(x) = −∞.

Example 3.5. If lim supn→∞ an+1/an > 2, then (3) fails. To see this, write an+1 = λnan . Then, whenever λn � 2 + ε,

an+1 − 2an + 2n − log2(an+1 − an) = (λn − 2)an + 2n − log2
(
(λn − 1)an

)
� (λn − 2)an + 2n − log2

(
(λn − 2)an

) − (2/ε)

� 2n − (2/ε) → ∞,

where the first inequality follows since, by the mean value theorem,

log2(λn − 1) − log2(λn − 2) � 1

(λn − 2) log 2
< 2/ε.

Thus, even if the 4 in Krüppel’s counterexample in Section 2 is replaced by a smaller number γ > 2, T will not have an
improper derivative at x.

Example 3.6. On the other hand, a sufficient condition for (3) to hold is that, for some 0 < ε � 1,

lim sup
n→∞

an+1

an
= 2 − ε and lim inf

n→∞
an

n
>

2

ε
. (5)

(We leave the easy verification to the reader.) Thus, for instance, (3) holds for an = 3n; for any increasing polynomial
of degree 2 or higher; and for any exponential sequence an = 
αn� with 1 < α < 2. As another example, let an be the
n-th prime number; then an/n log n → 1 by the Prime Number Theorem. Thus, an satisfies (5) with ε = 1, and hence it
satisfies (3).

If lim supn→∞ an+1/an = 2, then a finer examination of the asymptotics of the sequence {an} is necessary, as the next
example shows.
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Example 3.7. The sequence an = 2n does not satisfy (3); neither does an = 2n + n. But an = 2n + (1 + ε)n satisfies (3) for any
ε > 0:

an+1 − 2an + 2n − log2(an+1 − an) = (1 − ε)n + 1 + ε − log2
(
2n + 1 + ε

)
� −εn + 1 + ε → −∞.

This last example also illustrates that the logarithmic term in (3) can sometimes be of critical importance.

An important subset of [0,1] is formed by the points x whose binary expansion has a density; that is, points x =∑∞
k=1 2−kεk for which the limit

d1(x) := lim
n→∞

1

n

n∑
k=1

εk (6)

exists. Note that d1(x) expresses the long-run proportion of 1’s in the binary expansion of x. If it exists, we define

d0(x) := 1 − d1(x) (7)

to denote the long-run proportion of 0’s. An immediate consequence of Theorem 3.1 is that T (x) has an infinite derivative
at the majority of points x for which d1(x) exists and is different from 1/2.

Corollary 3.8. Let x be a non-dyadic point, and suppose d1(x) exists.

(i) If 0 < d1(x) < 1/2, then T ′(x) = +∞.
(ii) If 1/2 < d1(x) < 1, then T ′(x) = −∞.

(iii) If d1(x) = 0 and lim supn→∞ an+1/an < 2, then T ′(x) = +∞.
(iv) If d1(x) = 1 and lim supn→∞ bn+1/bn < 2, then T ′(x) = −∞.

Proof. By the definition (6), n/an → d1(x) and n/bn → d1(1 − x) = d0(x). In particular, if 0 < d1(x) < 1, it follows that
an+1/an → 1 and bn+1/bn → 1. Thus, under the conditions of the corollary, (5) (or its analog for the sequence {bn}) is
satisfied. �

Corollary 3.8 has a remarkable consequence for the Hausdorff dimension of the set of points where T ′(x) = ±∞. (See
[2] for the definition and basic properties of Hausdorff dimension.)

Corollary 3.9. Let S∞ = {x ∈ [0,1]: T ′(x) = ∞}, and S−∞ = {x ∈ [0,1]: T ′(x) = −∞}. Then

dimH S∞ = dimH S−∞ = 1,

where dimH denotes the Hausdorff dimension.

Proof. By Corollary 3.8, S∞ contains the sets F (α) := {x ∈ [0,1]: d1(x) = α}, for 0 < α < 1/2. It is well known that

dimH F (α) = −α log(α) − (1 − α) log(1 − α)

log 2

(see [2, Proposition 10.1]). Thus,

dimH S∞ � dimH

⋃
0<α<1/2

F (α) = sup
0<α<1/2

dimH F (α) = 1.

The dimension of S−∞ follows in the same way. �
Corollary 3.8 left out the (binary) normal numbers; that is, those numbers x for which d1(x) = 1/2. These numbers form

a set of Lebesgue measure one by Borel’s theorem. However, the law of the iterated logarithm implies that for almost all
of those, lim supn→∞ Dn = +∞ and lim infn→∞ Dn = −∞. Hence, at almost all normal numbers, T does not even have a
one-sided infinite derivative. Less extremely, for any rational normal number x (such as x = 1/3), Dn oscillates between
finite bounds so that T ′(x) does not exist.

Nonetheless, many normal numbers satisfy T ′(x) = ±∞. For instance, if an = 2n +
√n� or an = 2n +
log n�, it is easy to
see that (3) is satisfied. On the other hand, surprisingly perhaps, there exist normal numbers for which T ′+(x) = +∞, but
T ′−(x) fails to exist. Here we construct one such example.
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Example 3.10. Let a1 = 3, and for n � 1, define an+1 recursively as follows. If an � 2n + 
√n�, put an+1 = 2n + 3
√n�;
otherwise, put an+1 = an + 1. Since an always increases by at least 1 and 2n +
√n� increases by at most 3 at each step, it is
clear that for every n, an � 2n + 
√n� − 1. Hence an − 2n → ∞. Furthermore, an � 2n + 3
√n� for each n, and so an/n → 2.
Finally, it is easy to check that an � 2n + 
√n� for infinitely many n. Thus, infinitely often,

an+1 − 2an + 2n − log2(an+1 − an) � 2n + 3
√n� − 2
(
2n + 
√n�) + 2n − log2

(
2
√n� + 1

)
� 
√n� − 1

2
log2 n − 2 → ∞.

4. Proof of the main theorem

To prove Theorem 3.1 we will use an approach by N. Kono [3]. Let x and h be real numbers such that 0 � x < x + h < 1,
and write

x =
∞∑

k=1

2−kεk, x + h =
∞∑

k=1

2−kε′
k,

where εk, ε
′
k ∈ {0,1}. When x is dyadic rational, there are two binary expansions, but we choose the one which is eventually

all zeros.
For h > 0, let p := p(h) ∈ N such that 2−p−1 < h � 2−p , and let

k0 := max
{
k: ε1 = ε′

1, . . . , εk = ε′
k

}
(or k0 = 0 if ε1 = ε′

1). Clearly 0 � k0 � p, and we have the implications

k0 < p ⇒ εk0+1 = 0 and ε′
k0+1 = 1, (8)

k0 + 2 � p ⇒ ε′
k = 0 and εk = 1 for k0 + 2 � k � p. (9)

Observe that by the assumption for the expression of x, k0 → ∞ as h ↓ 0. Let Xn(x) := 1 − 2εn(x) = (−1)εn(x) denote the
n-th Rademacher function. For h > 0, the following representation is a special case of Lemma 3 in [3]:

T (x + h) − T (x) = Σ1 + Σ2 + Σ3,

where

Σ1 = h
k0∑

n=1

Xn(x) = hDk0 ,

Σ2 =
[ ∞∑

k=p+1

2−k(1 − εk − ε′
k

)] p∑
n=k0+1

Xn(x),

Σ3 = 1

2

∞∑
n=p+1

∞∑
k=n+1

[
Xn(x)Xk(x) − Xn(x + h)Xk(x + h)

]
2−k.

Since Σ3 = O(h), it plays no role in determining whether T ′+(x) = ±∞. In fact, for many points x the behavior of the
difference quotient is controlled by Σ1 alone, but in some cases, Σ2 may be of the same order of magnitude but with
the opposite sign. The key to the proof of Theorem 3.1, then, is a careful analysis of this ‘rogue’ term, especially the factor∑∞

k=p+1 2−k(1 − εk − ε′
k). Note that the other factor can be written more simply: if k0 < p, then

p∑
n=k0+1

Xn(x) = −(p − k0 − 2), (10)

in view of (8) and (9).

Lemma 4.1. Assume k0 < p. Then

∞∑
2−k(1 − εk − ε′

k

)
� h.
k=p+1
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Moreover, if m � 0 such that εp+m+1 = 0, then

∞∑
k=p+1

2−k(1 − εk − ε′
k

)
� −h

(
1 − 2−m)

.

Proof. If h < 2−p , then a “1” is carried from position p + 1 to position p in the addition of x and h because of the
assumption that k0 < p. If h = 2−p , then εk = ε′

k for all k > p. In both cases, we have

∞∑
k=p+1

2−kεk + h = 2−p +
∞∑

k=p+1

2−kε′
k, (11)

and so

h −
∞∑

k=p+1

2−k(1 − εk − ε′
k

) = 2−p +
∞∑

k=p+1

2−k(2ε′
k − 1

)
� 0.

For the second statement, observe that h(1 − 2−m) � h − 2−m−p since h � 2−p . Thus, using (11) we obtain

h
(
1 − 2−m) +

∞∑
k=p+1

2−k(1 − εk − ε′
k

)
� 2−p +

∞∑
k=p+1

2−k(1 − 2εk) − 2−m−p

� 2−p +
∞∑

k=p+1

2−k(−1) + 2 · 2−(p+m+1) − 2−m−p = 0,

where the last inequality follows since εp+m+1 = 0. �
Lemma 4.2. Let c � 1, and define the function f : {0,1,2, . . .} → R by

f (m) = (
1 − 2−m)

(c − m).

Let m∗ be the largest integer m where f (m) attains its maximum. Then

log2 c − 2 < m∗ � log2 c + 1.

Proof. An easy calculation gives

f (m + 1) − f (m) = 2−(m+1)(c + 1 − m) − 1,

so f (m + 1) � f (m) if and only if 2m+1 + m � c + 1. Thus,

2m∗ + m∗ − 1 � c + 1, (12)

2m∗+1 + m∗ > c + 1. (13)

From (12) we obtain m∗ � log2 c + 1. On the other hand, (13) yields

2m∗+2 > 2m∗+1 + m∗ > c,

so that m∗ > log2 c − 2. �
Proof of Theorem 3.1. Since T (1 − x) = T (x), it is enough to prove parts (i) and (iii). Statements (ii) and (iv) follow from
these by replacing x with 1 − x.

We first prove part (i). Assume Dn → ∞, and let h > 0. Suppose first that k0 � p − 2. Then p − k0 − 2 � 0, so it follows
from (10) and Lemma 4.1 that

Σ2 � −h(p − k0 − 2).

And, since O k0 = O p − 1,

Σ1 = h(O k0 − Ik0) = h(2O k0 − k0) = h(2O p − k0 − 2),

so that
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T (x + h) − T (x) = Σ1 + Σ2 + Σ3

� h(2O p − k0 − 2) − h(p − k0 − 2) + O(h)

= h(2O p − p) + O(h) = hD p + O(h).

If, on the other hand, k0 � p − 1, then Σ2 = O(h), and O k0 � O p − 1. Thus,

T (x + h) − T (x) = Σ1 + O(h) � h(D p − 2) + O(h).

In both cases,

T (x + h) − T (x)

h
� D p + O(1),

and hence, T ′+(x) = +∞.
Conversely, suppose lim infn→∞ Dn < ∞. Choose a sequence {nk} increasing to +∞ so that limk→∞ Dnk < ∞, and let

pk := min{n � nk: εn = 0}. For h = 2−pk and p = pk , we have k0 = p − 1 and so Σ2 = O(h). Hence T (x + h) − T (x) =
Σ1 + O(h) = hDk0 + O(h). Since Dk0 = D pk − 1 � Dnk , it follows that

lim inf
h↓0

T (x + h) − T (x)

h
� lim

k→∞
Dnk + O(1) < ∞.

Next, we prove statement (iii). Suppose first that (4) holds. Let h > 0, 2−p−1 < h � 2−p , and let n be the integer such
that bn � p < bn+1. Put m = bn+1 − p − 1; then p + m + 1 = bn+1 and so εp+m+1 = 0, since the bn ’s indicate the locations of
the zeros in the binary expansion of x. Now it follows from (4) that bn − 2n → ∞, or equivalently, Dk → −∞ as k → ∞. If
p − k0 < 2, then Σ1 = hDk0 and Σ2 = O(h), and so

T (x + h) − T (x)

h
= Dk0 + O(1) → −∞.

Assume then that p − k0 � 2. By (8) and (9), k0 = bn − 1, and since O bn = n, we have

Σ1 = h(2O k0 − k0) � h(2O bn − k0) = h(2n − k0).

As for Σ2, Lemma 4.1 gives

Σ2 � h
(
1 − 2−m)

(p − k0 − 2) � h
(
1 − 2−m)

(p − k0).

Hence,

T (x + h) − T (x)

h
� 2n − k0 + (

1 − 2−m)
(p − k0) + O(1)

= 2n − bn + (
1 − 2−m)

(bn+1 − bn − m) + O(1). (14)

For given n, let mn be the largest value of m which maximizes the function

fn(m) = (
1 − 2−m)

(bn+1 − bn − m).

By Lemma 4.2 we have, for any m,

2n − bn + fn(m) � bn+1 − 2bn + 2n − mn

� bn+1 − 2bn + 2n − log2(bn+1 − bn) + 2.

This, in combination with (4), (14), and the already established result for the case p − k0 < 2, yields T ′+(x) = −∞.
For the converse, assume that (4) fails. Suppose first that Dn → −∞, or equivalently, bn − 2n → ∞. Replacing the

sequence {bn} with a suitable subsequence if necessary, we may assume there exists M ∈ R such that

bn+1 − 2bn + 2n − log2(bn+1 − bn) > M for all n. (15)

Fix n ∈ N temporarily, let m = mn , and let h = 2−p , where p = bn+1 − m. By Lemma 4.2,

bn+1 − m − bn � bn+1 − bn − log2(bn+1 − bn) − 1

> M + (bn − 2n) − 1 → ∞.

Thus, for all sufficiently large n, bn < p < bn+1. Therefore k0 = bn − 1, and

Σ1 = h(2O k − k0) = h(2n − bn − 1).
0
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Furthermore, p − k0 − 2 = bn+1 − bn − m − 1 � 0 for n large enough, and

∞∑
k=p+1

2−k(1 − εk − ε′
k

)
� −

bn+1−1∑
k=p+1

2−k +
∞∑

k=bn+1

2−k

= −2−p(
1 − 2−(bn+1−p−2)

) = −h
(
1 − 2−(m−2)

)
,

where the inequality follows since εk = ε′
k = 1 for k = p + 1, . . . ,bn+1 − 1. Hence

Σ2 � h
(
1 − 2−(m−2)

)
(bn+1 − bn − m − 1).

Putting these results together, we obtain

T (x + h) − T (x)

h
� 2n − bn − 1 + (

1 − 2−(m−2)
)
(bn+1 − bn − m − 1) + O(1)

� bn+1 − 2bn + 2n − m − 2−(m−2)(bn+1 − bn) + O(1).

By Lemma 4.2, m � log2(bn+1 − bn) + 1, and the term 2−(m−2)(bn+1 − bn) is bounded. Thus,

T (x + h) − T (x)

h
� bn+1 − 2bn + 2n − log2(bn+1 − bn) + O(1), (16)

which is bounded below, by (15).
If lim supn→∞ Dn > −∞, then we can choose a sequence {nk} increasing to +∞ so that limk→∞ Dnk > −∞. Let pk :=

max{n � nk: εn = 0}; then D pk � Dnk . For h = 2−pk and p = pk , we have k0 = p − 1 and so Σ2 = O(h). Hence T (x + h) −
T (x) = hDk0 + O(h). Since Dk0 = D pk − 1 � Dnk − 1, it follows that

lim sup
h↓0

T (x + h) − T (x)

h
� lim

k→∞
Dnk + O(1) > −∞,

completing the proof. �
Remark 4.3. While this paper was under review, we learned that M. Krüppel has independently discovered the same result
as our Theorem 3.1, albeit by an entirely different method.

5. The modulus of continuity

In this final section we present some exact results concerning the modulus of continuity of T . Let d1(x) and d0(x) denote
the densities of 1 and 0 in the binary expansion of x, respectively, provided they exist (see (6) and (7)). Krüppel [4] recently
proved that if x is dyadic, then

lim
h→0

T (x + h) − T (x)

|h| log2(1/|h|) = 1, (17)

while if x is non-dyadic but rational, then

lim
h→0

T (x + h) − T (x)

h log2(1/|h|) = 1 − 2(εk+1 + εk+2 + · · · + εk+m)

m
, (18)

where εk+1εk+2 · · ·εk+m is a repeating part in the binary expansion of x. Observe that for an x of the latter type, d1(x) =
(εk+1 + εk+2 + · · · + εk+m)/m, so the right-hand side of (18) can be written as d0(x) − d1(x).

Here we will give a simpler proof of (17), and generalize (18) to arbitrary real numbers. More precisely, we give a
complete characterization of the set of points x for which the limit in (18) exists, and show that if it does, it must equal
d0(x) − d1(x).

Definition 5.1. A point x ∈ [0,1] is density-regular if d1(x) exists and one of the following holds:

(a) 0 < d1(x) < 1; or
(b) d1(x) = 0 and an+1/an → 1; or
(c) d1(x) = 1 and bn+1/bn → 1.

Here, {an} and {bn} are the sequences determined by (2).

Lemma 5.2. Let x ∈ [0,1] and suppose d1(x) exists.
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(i) If d1(x) < 1, then

lim
h↓0

T (x + h) − T (x)

h log2(1/|h|) = d0(x) − d1(x). (19)

(ii) Suppose d1(x) = 1. Then

lim
h↓0

T (x + h) − T (x)

h log2(1/|h|) exists

if and only if bn+1/bn → 1, in which case the limit is equal to −1.

Proof. Assume throughout that d1(x) exists. If d1(x) < 1, then bn+1/bn → 1 holds automatically (see the proof of Corol-
lary 3.8). Thus, we can prove the two statements by a single argument.

Suppose first that bn+1/bn → 1. Then k0/p → 1 as h ↓ 0. We can write Σ1 = hDk0 = h(O k0 − Ik0). Since p � log2(1/|h|) <

p + 1 and

lim
k0→∞

O k0 − Ik0

k0
= d0(x) − d1(x),

it follows that

lim
h↓0

Σ1

h log2(1/|h|) = d0(x) − d1(x).

Next, by Lemma 4.1 and (10), we have |Σ2| � h(p − k0), and hence,

|Σ2|
h log2(1/|h|) � p − k0

p
→ 0.

Finally, since Σ3 = O(h), (19) follows.
Conversely, suppose d1(x) = 1 and bn+1/bn does not tend to 1; in other words, lim supn→∞ bn/bn+1 < 1. On the one

hand, we can choose an increasing index sequence {pn} such that εpn = 0 for each n; such a sequence exists even if x is
dyadic, in view of our convention of choosing the representation ending in all zeros for such points. Put hn := 2−pn . Then
k0 = pn − 1, so Σ2 = O(hn) and

lim
n→∞

T (x + hn) − T (x)

hn log2(1/|hn|) = lim
n→∞

Σ1

hn log2(1/|hn|) = −1,

as above. On the other hand, we can let h approach 0 along a sequence {hn} just as in the last part of the proof of
Theorem 3.1. Since p = bn+1 − mn ∼ bn+1, dividing both sides by log2(1/|h|) in (16) gives

lim inf
n→∞

T (x + hn) − T (x)

hn log2(1/|hn|) � lim inf
n→∞

bn+1 − 2bn

bn+1
> −1,

since the remaining terms in (16) are of smaller order than bn+1 in view of n/bn → 0. Thus, the limit in (19) does not
exist. �
Corollary 5.3. (See Krüppel [4, Proposition 3.2].) If x is dyadic, then (17) holds.

Proof. If x is dyadic, then d1(x) = d1(1 − x) = 0. Thus, the statement follows by applying Lemma 5.2 first to x and then to
1 − x, since for h < 0,

T (x + h) − T (x)

|h| log2(1/|h|) = T (1 − x + |h|) − T (1 − x)

|h| log2(1/|h|) ,

by the symmetry of T . �
For non-dyadic x, we obtain the following result. Before stating it we observe that, if limn→∞ n/bn = d, then d0(x) exists

and is equal to d. (This is straightforward to verify.)

Theorem 5.4. Let x be non-dyadic, and define an and bn as in (2). The limit

lim
h→0

T (x + h) − T (x)

h log2(1/|h|)
exists if and only if x is density-regular, in which case the limit is equal to d0(x) − d1(x).
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Proof. If d1(x) exists, the result follows by applying Lemma 5.2 first to x and then to 1 − x, since d1(x) = 1 − d1(1 − x).
Suppose d1(x) does not exist. For n ∈ N, let p = bn and h = 2−p ; then k0 = p − 1, so Σ2 = O(h) and Σ1 = hDk0 =

h(D p − 1) = h(2n − bn − 1). Thus,

T (x + h) − T (x)

h log2(1/|h|) = 2n − bn − 1

bn
+ o(1) = 2

n

bn
− 1 + o(1),

which does not have a limit as n → ∞. �
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