488 research outputs found

    Spatially Resolved X-ray Spectroscopy of Vela Shrapnel A

    Full text link
    We present the detailed X-ray spectroscopy of Vela shrapnel A with the XMM-Newton satellite. Vela shrapnel A is one of several protrusions identified as bullets from Vela supernova explosion. The XMM-Newton image shows that shrapnel A consists of a bright knot and a faint trailing wake. We extracted spectra from various regions, finding a prominent Si Lyα_\alpha emission line in all the spectra. All the spectra are well represented by the non-equilibrium ionization (NEI) model. The abundances are estimated to be O\sim0.3, Ne\sim0.9, Mg\sim0.8, Si\sim3, Fe\sim0.8 times their solar values. The non-solar abundance ratio between O and Si indicates that shrapnel A originates from a deep layer of a progenitor star. We found that the relative abundances between heavy elements are almost uniform in shrapnel A, which suggests that the ejecta from supernova explosion are well mixed with swept-up interstellar medium.Comment: 11 pages, 10 figures, ApJ 10 May 2006, v642 2 issu

    Shock Speed, Cosmic Ray Pressure, and Gas Temperature in the Cygnus Loop

    Full text link
    Upper limits on the shock speeds in supernova remnants can be combined with post-shock temperatures to obtain upper limits on the ratio of cosmic ray to gas pressure (P_CR / P_G) behind the shocks. We constrain shock speeds from proper motions and distance estimates, and we derive temperatures from X-ray spectra. The shock waves are observed as faint H-alpha filaments stretching around the Cygnus Loop supernova remnant in two epochs of the Palomar Observatory Sky Survey (POSS) separated by 39.1 years. We measured proper motions of 18 non-radiative filaments and derived shock velocity limits based on a limit to the Cygnus Loop distance of 576 +/- 61 pc given by Blair et al. for a background star. The PSPC instrument on-board ROSAT observed the X-ray emission of the post-shock gas along the perimeter of the Cygnus Loop, and we measure post-shock electron temperature from spectral fits. Proper motions range from 2.7 arcseconds to 5.4 arcseconds over the POSS epochs and post-shock temperatures range from kT ~ 100-200 eV. Our analysis suggests a cosmic ray to post-shock gas pressure consistent with zero, and in some positions P_CR is formally smaller than zero. We conclude that the distance to the Cygnus Loop is close to the upper limit given by the distance to the background star and that either the electron temperatures are lower than those measured from ROSAT PSPC X-ray spectral fits or an additional heat input for the electrons, possibly due to thermal conduction, is required.Comment: Submitted to ApJ, 7 color figure

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of \sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    Long-Term Density Trend in the Mesosphere and Lower Thermosphere from Occultations of the Crab Nebula with X-Ray Astronomy Satellites

    Get PDF
    We present long-term density trends of the Earth's upper atmosphere at altitudes between 71 and 116 km, based on atmospheric occultations of the Crab Nebula observed with X-ray astronomy satellites, ASCA, RXTE, Suzaku, NuSTAR, and Hitomi. The combination of the five satellites provides a time period of 28 yr from 1994 to 2022. To suppress seasonal and latitudinal variations, we concentrate on the data taken in autumn (49< doy <111) and spring (235< doy <297) in the northern hemisphere with latitudes of 0--40 degrees. With this constraint, local times are automatically limited either around noon or midnight. We obtain four sets (two seasons times two local times) of density trends at each altitude layer. We take into account variations due to a linear trend and the 11-yr solar cycle using linear regression techniques. Because we do not see significant differences among the four trends, we combine them to provide a single vertical profile of trend slopes. We find a negative density trend of roughly -5 %/decade at every altitude. This is in reasonable agreement with inferences from settling rate of the upper atmosphere. In the 100--110 km altitude, we found an exceptionally high density decline of about -12 %/decade. This peak may be the first observational evidence for strong cooling due to water vapor and ozone near 110 km, which was first identified in a numerical simulation by Akmaev et al. (2006). Further observations and numerical simulations with suitable input parameters are needed to establish this feature.Comment: 38 pages, 9 figures, accepted for publication in Journal of Geophysical Research - Space Physic

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Inflammatory pseudotumors of the kidney and the lung presenting as immunoglobulin G4-related disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>It has been reported that immunoglobulin G4-related systemic disease can spread to nearly every organ, and often presents as an inflammatory mass or masses at those sites. In the kidney, this disease is often diagnosed after a radical or partial nephrectomy following the discovery of an inflammatory mass which is often suspected to be a malignant tumor. Here, we present a rare case of inflammatory pseudotumors of the kidney and the lung presenting as immunoglobulin G4-related disease, which were diagnosed by computed tomography-guided biopsies.</p> <p>Case presentation</p> <p>A 54-year-old Japanese man was referred to our hospital with suspected bilateral renal cancer, multiple lung metastases and autoimmune pancreatitis. His serum immunoglobulin G4 level was high. We used computed tomography-guided biopsies and histopathological examinations of the biopsied specimens to diagnose the tumors as immunoglobulin G4-related bilateral renal and lung inflammatory pseudotumors. Our patient was treated with oral prednisolone, and after one month of treatment, contrast-enhanced computed tomography demonstrated a general improvement, as noted by a reduction in size of the masses.</p> <p>Conclusion</p> <p>Renal masses that are formed due to immunoglobulin G4-related disease require comprehensive diagnosis to prevent unnecessary surgical resections from being performed. Further consideration should be paid to immunoglobulin G4-related diseases in the future.</p

    A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.

    Get PDF
    Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control
    corecore