2,307 research outputs found

    On X-ray sources based on Cherenkov and quasi-Cherenkov emission mechanisms

    Get PDF
    A variety of possible schemes of X-ray sources based on Cherenkov like emission mechanisms is considered theoretically. The possibility to increase substantially an angular density of parametric X-ray source under conditions of grazing incidence of emitting relativistic electrons on the reflecting crystallographic plane of a crystalline target is shownye

    A Proposed Process for Managing the First Amendment Aspects of Campus Hate Speech

    Get PDF
    For public institutions, attempts to regulate hate speech raise substantial legal issues under the First Amendment of the U.S. Constitution. For private institutions, which may not be bound by the First Amendment, attempts to regulate hate speech raise sensitive policy questions concerning the role of free expression on campus. Numerous articles (many of which are listed in the references below) have undertaken substantive analysis of these constitutional issues and policy questions. In contrast, this article explores a preliminary and overarching concern: the process by which a college or university addresses the problem of hate speech, and in particular the process by which the institution manages the First Amendment aspects of the problem. In other words, this article focuses on the decision-making process rather than on the decisions themselves; it is the journey, not the destination, that is of primary concern

    Effect of anomalous photoabsorption on parametric X-ray radiation from relativistic electrons

    Get PDF
    Parametric X-ray radiation from relativistic electrons moving in a crystal is theoretically investigated in Bragg geometry. It is shown that the effect of anomalous photoabsorption can manifest itself within this geometry of the scattering of the pseudophoton field of a fast particleye

    X-ray generation from relativistic electrons passing through thin targets in cyclical accelerators

    Get PDF
    The characteristics of quasi-monochromatic tunable X-ray sources based on multipasses of electrons through thin targets installed in cyclical accelerators are discussed. An internal bremsstrahlung radiator coupled with a multilayer X-mirror placed outside the accelerator vacuum chamber is used to produce tunable, narrow spectrayesBelgorod State Universit

    Crystal Undulator As A Novel Compact Source Of Radiation

    Full text link
    A crystalline undulator (CU) with periodically deformed crystallographic planes is capable of deflecting charged particles with the same strength as an equivalent magnetic field of 1000 T and could provide quite a short period L in the sub-millimeter range. We present an idea for creation of a CU and report its first realization. One face of a silicon crystal was given periodic micro-scratches (grooves), with a period of 1 mm, by means of a diamond blade. The X-ray tests of the crystal deformation have shown that a sinusoidal-like shape of crystalline planes goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in CU, a novel compact source of radiation. The first experiment on photon emission in CU has been started at LNF with 800 MeV positrons aiming to produce 50 keV undulator photons.Comment: Presented at PAC 2003 (Portland, May 12-16

    Experimental Study For The Feasibility Of A Crystalline Undulator

    Get PDF
    We present an idea for creation of a crystalline undulator and report its first realization. One face of a silicon crystal was given periodic micro-scratches (trenches) by means of a diamond blade. The X-ray tests of the crystal deformation due to given periodic pattern of surface scratches have shown that a sinusoidal shape is observed on both the scratched surface and the opposite (unscratched) face of the crystal, that is, a periodic sinusoidal deformation goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in crystalline undulator, a novel compact source of radiation.Comment: 12 pages, 4 figure

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
    corecore