1,079 research outputs found

    The B→Xsl+l−B\to X_sl^+l^- and B→XsγB\to X_s \gamma decays with the fourth generation

    Full text link
    If the fourth generation fermions exist, the new quarks could influence the branching ratios of the decays of B→XsγB\to X_s \gamma and B→Xsl+l−B\to X_sl^+l^-. We obtain two solutions of the fourth generation CKM factor Vt′s∗Vt′bV^{*}_{t^{'}s}V_{t^{'}b} from the decay of B→XsγB\to X_s \gamma. We use these two solutions to calculate the new contributions of the fourth generation quark to Wilson coefficients of the decay of B→Xsl+l−B\to X_sl^+l^-. The branching ratio and the forward-backward asymmetry of the decay of B→Xsl+l−B\to X_sl^+l^- in the two cases are calculated. Our results are quite different from that of SM in one case, almost same in another case. If Nature chooses the formmer, the BB meson decays could provide a possible test of the forth generation existence.Comment: 10 pages, 5 figure

    Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis

    Get PDF
    Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster

    Lepton flavor violation two-body decays of quarkoniums

    Full text link
    In this paper we firstly study various model-independent bounds on lepton flavor violation (LFV) in processes of J/ΨJ/\Psi, Ψ′\Psi' and Υ\Upsilon two-body decays, then calculate their branch ratios % By using the constraints from other ways, we obtain %the indirect bounds of Br(J/Ψ,Ψ′,Υ→ll′){\rm Br} (J/\Psi,\Psi',\Upsilon \to ll') in models of the leptoquark, RR violating MSSM and topcolor assisted technicolor(TC2) models.Comment: 14 pages, 4 figures, submitted to PR

    High-Yield 5-Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor

    Get PDF
    5-Hydroxymethylfurfural (HMF) is an important biobased platform chemical obtainable in high selectivity by the hydrolysis of fructose (FRC). However, FRC is expensive, making the production of HMF at a competitive market price highly challenging. Here, it is shown that sugar beet thick juice, a crude, sucrose-rich intermediate in sugar refining, is an excellent feedstock for HMF synthesis. Unprecedented high selectivities and yields of '90 % for HMF were achieved in a biphasic reactor setup at 150 °C using salted diluted thick juice with H2SO4 as catalyst and 2-methyltetrahydrofuran as a bioderived extraction solvent. The conversion of glucose, obtained by sucrose inversion, could be limited to '10 mol %, allowing its recovery for further use. Interestingly, purified sucrose led to significantly lower HMF selectivity and yields, showing advantages from both an economic and chemical selectivity perspective. This opens new avenues for more cost-effective HMF production

    Valuation impacts of environmental protection taxes and regulatory costs in heavy-polluting industries

    Get PDF
    In 2016, the issue of the Environmental Protection Tax Law indicated the enhancement of environmental protection in China. This study examines the market reaction to firms in heavy-polluting industries, and the effects of external legal institutional quality and internal environmental disclosure on firm value around the passage of Environmental Protection Tax Law. Using an event study approach coupled with ordinary least square regressions, the researchers find a significantly negative market reaction to firms in heavy-polluting industries, but this negative reaction varies depending on the expected increase in future regulatory costs. Specifically, the above negative reaction is stronger when the firm reveals that itself or its subsidiary belongs to heavy-polluting industry, however it would be mitigated when a firm is in a region with better quality of legal institutions or discloses environmental improvement activities. Overall, the results are consistent with the market perceiving that the environmental protection tax law enacted would increase regulatory costs for firms in heavy-polluting industries, and also show the higher-quality regional legal institutions and more efforts on environmental protection could relieve the market’s pessimism caused by uncertainty

    Genomic diversity among Basmati rice (Oryza sativa L) mutants obtained through 60Co gamma radiations using AFLP markers

    Get PDF
    Mutation breeding can be considered successful in obtaining new cultivars and broadening the genetic base of rice crop. In order to obtain new varieties of rice with improved agronomic and grain characteristics, gamma radiation (60Co) has been used to generate novel mutants of the Basmati rice. In this study rice cultivars; Basmati-370 and Basmati-Pak, were exposed to different doses of gamma radiations and stable mutants along with parents were studied for genomic diversity on the basis of molecular marker (AFLP). Morphological data showed that mutants of Basmati-370 performed well for yield and yield components and grain physical parameters whereas, the mutant EL-30-2-1 has extra long rain trait as compared to the parent (Basmati-Pak). The genetic variations determined through AFLP revealed a total of 282 scorable bands, out of which 108 (37.81%) were polymorphic. The number of fragments produced by various primers combinations ranged from 11 - 26 with an average of 17.63fragments per primer combination. Maximum 26 bands were amplified with P-AAG/M-CAG primer combination and minimum one band was amplified with P-ATG/M-CTA primer combination. Two groups of genotypes were detected; group-A had DM-1-30-3-99, DM-1-30-34-99 and EF-1-20-52-04 mutants along with parent Basmati-370, whereas the group-B contained EL-30-2-1 and parent Basmati-Pak. The results of AFLP analysis indicated that the rate of polymorphism was 4.43% (DM-1-30-3-99), 4.25% (DM-1-30-34-99) and 6.38% (EF-1-20-52-04) among the genomes of mutants and parent Basmati-370, respectively, whereas polymorphism rate was 5.32% between genome of EL-30-2-1 and Basmati-Pak. The study further confirmed that the use of gamma radiations is an effective approach for creating new rice germplasm

    Geometrical structure effect on localization length of carbon nanotubes

    Full text link
    The localization length and density of states of carbon nanotubes are evaluated within the tight-binding approximation. By comparison with the corresponding results for the square lattice tubes, it is found that the hexagonal structure affects strongly the behaviors of the density of states and localization lengths of carbon nanotubes.Comment: 7 pages, 4 figures, revised version to appear in Chin. Phys. Lett. The title is changed. Some arguments are adde

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    Flavor changing scalar couplings and tγ(Z)t\gamma(Z) production at hadron colliders

    Full text link
    We calculate the contributions of the flavor changing scalar (FCSFCS) couplings arised from topcolor-assisted technicolor (TC2TC2) models at tree-level to the tγt\gamma and tZtZ production at the Tevatron and LHCLHC experiments. We find that the production cross sections are very small at the Tevatron with s=1.96TeV\sqrt{s}=1.96TeV, which is smaller than 5 fb in most of the parameter space of TC2TC2 models. However, the virtual effects of the FCSFCS couplings on the tγ(Z)t\gamma(Z) production can be easily detected at the LHCLHC with s=14TeV\sqrt{s}=14TeV via the final state γlνˉb\gamma l\bar{\nu}b (l+l−lνˉbl^{+}l^{-}l\bar{\nu}b).Comment: 10 pages,5 figure
    • …
    corecore