528 research outputs found

    The U.S. Creation of the South Vietnamese Air Force, 1955-1975

    Get PDF
    From 1962 until 1973 the United States Air Force (USAF) built a small but effective South Vietnamese Air Force (VNAF). VNAF grew from approximately 4,000 personnel in 1963, flying ninety-six aircraft in six squadrons, to 60,000 personnel and sixty-five squadrons with over 2,000 aircraft by 1973. There was continuous change in the type of aircraft provided to the VNAF as the USAF upgraded VNAF’s capabilities. Training VNAF personnel was a continuing problem for both pilots and support personnel because of the almost constant aircraft upgrades and increase of size of the VNAF. VNAF was growing, developing doctrine, establishing its mission requirements, training, and acquiring new aircraft types while conducting major combat operations against the Viet Cong and North Vietnamese Army. After the USAF withdrew in 1973, the VNAF was unable to maintain its aircraft readiness levels, nor coordinate with the South Vietnamese Army to stop the North Vietnamese invasion, 1974-1975

    Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes

    Get PDF
    Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pump-probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two "open" structures and two "closed" structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm-1 coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis

    Vaccines and Immunotherapeutics for the Treatment of Malignant Disease

    Get PDF
    The employment of the immune system to treat malignant disease represents an active area of biomedical research. The specificity of the immune response and potential for establishing long-term tumor immunity compels researchers to continue investigations into immunotherapeutic approaches for cancer. A number of immunotherapeutic strategies have arisen for the treatment of malignant disease, including various vaccination schemes, cytokine therapy, adoptive cellular therapy, and monoclonal antibody therapy. This paper describes each of these strategies and discusses some of the associated successes and limitations. Emphasis is placed on the integration of techniques to promote optimal scenarios for eliminating cancer

    The Role of CD 133+ Cells in a Recurrent Embryonal Tumor with Abundant Neuropil and True Rosettes ( ETANTR )

    Full text link
    Embryonal tumor with abundant neuropil and true rosettes ( ETANTR ) is a recently described embryonal neoplasm of the central nervous system, consisting of a well‐circumscribed embryonal tumor of infancy with mixed features of ependymoblastoma (multilayer ependymoblastic rosettes and pseudorosettes) and neuroblastoma (neuroblastic rosettes) in the presence of neuropil‐like islands. We present the case of a young child with a very aggressive tumor that rapidly recurred after gross total resection, chemotherapy and radiation. Prominent vascular sclerosis and circumscribed tumor led to the diagnosis of malignant astroblastoma; however, rapid recurrence and progression of this large tumor after gross total resection prompted review of the original pathology. ETANTR is histologically distinct with focal glial fibrillary acid protein ( GFAP ) and synaptophysin expression in the presence of neuronal and ependymoblastic rosettes with focal neuropil islands. These architectural features, combined with unique chromosome 19q13.42 amplification, confirmed the diagnosis. In this report, we describe tumor stem cell ( TSC ) marker CD 133, CD 15 and nestin alterations in ETANTR before and after chemotherapy. We found that TSC marker CD 133 was richly expressed after chemotherapy in recurrent ETANTR , while CD 15 is depleted compared with that expressed in the original tumor, suggesting that CD 133+ cells likely survived initial treatment, further contributing to formation of the recurrent tumor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102077/1/bpa12079.pd

    Use of chromatin immunoprecipitation (ChIP) to detect transcription factor binding to highly homologous promoters in chromatin isolated from unstimulated and activated primary human B cells

    Get PDF
    The Chromatin Immunoprecipiation (ChIP) provides a powerful technique for identifying the in vivo association of transcription factors with regulatory elements. However, obtaining meaningful information for promoter interactions is extremely challenging when the promoter is a member of a class of highly homologous elements. Use of PCR primers with small numbers of mutations can limit cross-hybridization with non-targeted sequences and distinguish a pattern of binding for factors with the regulatory element of interest. In this report, we demonstrate the selective in vivo association of NF-ÎșB, p300 and CREB with the human IÎł1 promoter located in the intronic region upstream of the CÎł1 exons in the immunoglobulin heavy chain locus. These methods have the ability to extend ChIP analysis to promoters with a high degree of homology

    Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)

    Get PDF
    We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13 Submissions were made by three free-modelling methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on-par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 free-modelling assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group. (An average GDT_TS of 61.4.) The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 free-modelling domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods

    Improved protein structure prediction using potentials from deep learning

    Get PDF
    Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7

    Step-by-step design of proteins for small molecule interaction: a review on recent milestones

    Get PDF
    Protein design is the field of synthetic biology that aims at developing de-novo custom made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high-throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step-by-step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization and experimental expression of the custom protein. In each step, contemporary examples are described, and state-of-the art software is briefly explored.publishe
    • 

    corecore