88 research outputs found

    Reversible Control of Magnetic Interactions by Electric Field in a Single Phase Material

    Full text link
    Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. We demonstrate 'giant' magnetoelectric cross-field control in a single phase rare earth titanate film. In bulk form, EuTiO3 is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest neighbor europium ions. In thin epitaxial films, strain can be used to alter the relative strength of the magnetic exchange constants. Here, we not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain state, switches the magnetic ground state. Using first principles density functional theory, we resolve the underlying microscopic mechanism resulting in the EuTiO3 G-type magnetic structure and illustrate how it is responsible for the 'giant' cross-field magnetoelectric effect

    The gift I covet, a ballad /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Say not, because you see no tears /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Ten Months of Digital Reading

    Get PDF
    We address digital reading practices in Russia analyzing 10 months of logging data from a commercial ebook mobile app.We describe the data and focus on three aspects: reading schedule, reading speed, and book abandonment. The exploratory study proves a high potential of the data and proposed approach.Peer Reviewe

    Resonant magnetic x-ray scattering from terbium

    No full text
    Resonant magnetic x-ray scattering from Tb in the spiral phase is studied in great detail. Polarization analysis in the sigma-sigma' and sigma-pi' channels has been performed for magnetic (0, 0, l +/- tau) satellite reflections over the accessible wavevector range Q = 1.9-6.5 angstrom(-1). A characteristic splitting of the resonance signal as a function of energy has been observed at the L-II as well as at the L-III absorption edge. The shape of the resonance depends on Q and is different for the two edges. Up to three components were observed with a separation in energy between 3.3 and 4.9 eV, compared to a core hole lifetime broadening of 2.5 eV, which is in agreement with the density of states in Tb metal

    Analysis of Bone Scans in Various Tumor Entities Using a Deep-Learning-Based Artificial Neural Network Algorithm—Evaluation of Diagnostic Performance

    No full text
    The bone scan index (BSI), initially introduced for metastatic prostate cancer, quantifies the osseous tumor load from planar bone scans. Following the basic idea of radiomics, this method incorporates specific deep-learning techniques (artificial neural network) in its development to provide automatic calculation, feature extraction, and diagnostic support. As its performance in tumor entities, not including prostate cancer, remains unclear, our aim was to obtain more data about this aspect. The results of BSI evaluation of bone scans from 951 consecutive patients with different tumors were retrospectively compared to clinical reports (bone metastases, yes/no). Statistical analysis included entity-specific receiver operating characteristics to determine optimized BSI cut-off values. In addition to prostate cancer (cut-off = 0.27%, sensitivity (SN) = 87%, specificity (SP) = 99%), the algorithm used provided comparable results for breast cancer (cut-off 0.18%, SN = 83%, SP = 87%) and colorectal cancer (cut-off = 0.10%, SN = 100%, SP = 90%). Worse performance was observed for lung cancer (cut-off = 0.06%, SN = 63%, SP = 70%) and renal cell carcinoma (cut-off = 0.30%, SN = 75%, SP = 84%). The algorithm did not perform satisfactorily in melanoma (SN = 60%). For most entities, a high negative predictive value (NPV ≥ 87.5%, melanoma 80%) was determined, whereas positive predictive value (PPV) was clinically not applicable. Automatically determined BSI showed good sensitivity and specificity in prostate cancer and various other entities. Particularly, the high NPV encourages applying BSI as a tool for computer-aided diagnostic in various tumor entities
    corecore