271 research outputs found

    Do Girls and Boys Perceive Themselves as Equally Engaged in School? The Results of an International Study from 12 Countries

    Get PDF
    This study examined gender differences in student engagement and academic performance in school. Participants included 3420 students (7th, 8th, and 9th graders) from Austria, Canada, China, Cyprus, Estonia, Greece, Malta, Portugal, Romania, South Korea, the United Kingdom, and the United States. The results indicated that, compared to boys, girls reported higher levels of engagement in school andwere rated higher by their teachers in academic performance. Student engagement accounted for gender differences in academic performance, but gender did not moderate the associations among student engagement, academic performance, or contextual supports. Analysis of multiple-group structural equation modeling revealed that perceptions of teacher support and parent support, but not peer support, were related indirectly to academic performance through student engagement. This partial mediation model was invariant across gender. The findings from this study enhance the understanding about the contextual and personal factors associated with girls' and boys' academic performance around the world

    Temperatures of Exploding Nuclei

    Get PDF
    Breakup temperatures in central collisions of 197Au + 197Au at bombarding energies E/A = 50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

    Get PDF
    GNS existence in PLLA favors α′ crystal formation more than α crystal formation resulting in a shift of α′–α crystal formation transition toward high Tcs.</p

    Breakup Density in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of protons, deuterons and tritons with alpha particles from spectator decays following 197Au + 197Au collisions at 1000 MeV per nucleon have been measured with two highly efficient detector hodoscopes. The constructed correlation functions, interpreted within the approximation of a simultaneous volume decay, indicate a moderate expansion and low breakup densities, similar to assumptions made in statistical multifragmentation models. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Time Scales in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of p-alpha, d-alpha, and t-alpha from spectator decays following Au + Au collisions at 1000 AMeV have been measured with an highly efficient detector hodoscope. The constructed correlation functions indicate a moderate expansion and low breakup densities similar to assumptions made in statistical multifragmentation models. In agreement with a volume breakup rather short time scales were deduced employing directional cuts in proton-proton correlations. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.MnComment: 8 pages, with 5 included figures; To appear in the proceedings of the CRIS 2000 conference; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Breakup Temperature of Target Spectators in Au + Au Collisions at E/A = 1000 MeV

    Get PDF
    Breakup temperatures were deduced from double ratios of isotope yields for target spectators produced in the reaction Au + Au at 1000 MeV per nucleon. Pairs of 3,4^{3,4}He and 6,7^{6,7}Li isotopes and pairs of 3,4^{3,4}He and H isotopes (p, d and d, t) yield consistent temperatures after feeding corrections, based on the quantum statistical model, are applied. The temperatures rise with decreasing impact parameter from 4 MeV for peripheral to about 10 MeV for the most central collisions. The good agreement with the breakup temperatures measured previously for projectile spectators at an incident energy of 600 MeV per nucleon confirms the observed universality of the spectator decay at relativistic bombarding energies. The measured temperatures also agree with the breakup temperatures predicted by the statistical multifragmentation model. For these calculations a relation between the initial excitation energy and mass was derived which gives good simultaneous agreement for the fragment charge correlations. The energy spectra of light charged particles, measured at θlab\theta_{lab} = 150^{\circ}, exhibit Maxwellian shapes with inverse slope parameters much higher than the breakup temperatures. The statistical multifragmentation model, because Coulomb repulsion and sequential decay processes are included, yields light-particle spectra with inverse slope parameters higher than the breakup temperatures but considerably below the measured values. The systematic behavior of the differences suggests that they are caused by light-charged-particle emission prior to the final breakup stage. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 29 pages, TeX with 11 included figures; Revised version accepted for publication in Z. Phys. A Two additional figure

    Layer-dependent optically-induced spin polarization in InSe

    Full text link
    Optical control of spin in semiconductors has been pioneered using nanostructures of III-V and II-VI semiconductors, but the emergence of two-dimensional van der Waals materials offers an alternative low-dimensional platform for spintronic phenomena. Indium selenide (InSe), a group-III monochalcogenide van der Waals material, has shown promise for opto-electronics due to its high electron mobility, tunable direct bandgap, and quantum transport. There are predictions of spin-dependent optical selection rules suggesting potential for all-optical excitation and control of spin in a two-dimensional layered material. Despite these predictions, layer-dependent optical spin phenomena in InSe have yet to be explored. Here, we present measurements of layer-dependent optical spin dynamics in few-layer and bulk InSe. Polarized photoluminescence reveals layer-dependent optical orientation of spin, thereby demonstrating the optical selection rules in few-layer InSe. Spin dynamics are also studied in many-layer InSe using time-resolved Kerr rotation spectroscopy. By applying out-of-plane and in-plane static magnetic fields for polarized emission measurements and Kerr measurements, respectively, the gg-factor for InSe was extracted. Further investigations are done by calculating precession values using a kp\textbf{k} \cdot \textbf{p} model, which is supported by \textit{ab-initio} density functional theory. Comparison of predicted precession rates with experimental measurements highlights the importance of excitonic effects in InSe for understanding spin dynamics. Optical orientation of spin is an important prerequisite for opto-spintronic phenomena and devices, and these first demonstrations of layer-dependent optical excitation of spins in InSe lay the foundation for combining layer-dependent spin properties with advantageous electronic properties found in this material.Comment: 11 pages, 6 figures, supplemental materia
    corecore