805 research outputs found

    Serum anti-Müllerian hormone concentrations before and after treatment of an ovarian granulosa cell tumour in a cat

    Get PDF
    Case summary A 15-year-old female cat was presented for investigation of progressive behavioural changes, polyuria, polydipsia and periuria. An ovarian granulosa cell tumour was identified and the cat underwent therapeutic ovariohysterectomy (OHE). The cat’s clinical signs resolved, but 6 months later it was diagnosed as having an anaplastic astrocytoma and was euthanased. Serum anti-Müllerian hormone (AMH) concentration prior to OHE was increased vs a control group of entire and neutered female cats. Following OHE, serum AMH concentration decreased to <1% of the original value. Relevance and novel information Serum AMH measurement may represent a novel diagnostic and monitoring tool for functional ovarian neoplasms in cats

    Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities

    Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program

    Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    Get PDF
    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed

    Extensive and Intimate Association of the Cytoskeleton with Forming Silica in Diatoms: Control over Patterning on the Meso- and Micro-Scale

    Get PDF
    BACKGROUND: The diatom cell wall, called the frustule, is predominantly made out of silica, in many cases with highly ordered nano- and micro-scale features. Frustules are built intracellularly inside a special compartment, the silica deposition vesicle, or SDV. Molecules such as proteins (silaffins and silacidins) and long chain polyamines have been isolated from the silica and shown to be involved in the control of the silica polymerization. However, we are still unable to explain or reproduce in vitro the complexity of structures formed by diatoms. METHODS/PRINCIPAL FINDING: In this study, using fluorescence microscopy, scanning electron microscopy, and atomic force microscopy, we were able to compare and correlate microtubules and microfilaments with silica structure formed in diversely structured diatom species. The high degree of correlation between silica structure and actin indicates that actin is a major element in the control of the silica morphogenesis at the meso and microscale. Microtubules appear to be involved in the spatial positioning on the mesoscale and strengthening of the SDV. CONCLUSIONS/SIGNIFICANCE: These results reveal the importance of top down control over positioning of and within the SDV during diatom wall formation and open a new perspective for the study of the mechanism of frustule patterning as well as for the understanding of the control of membrane dynamics by the cytoskeleton

    Development of a Miniaturized Hollow-Waveguide Gas Correlation Radiometer for Trace Gas Measurements in the Martian Atmosphere

    Get PDF
    We present preliminary results in the development of a miniaturized gas correlation radiometer (GCR) for column trace gas measurements in the Martian atmosphere. The GCR is designed as an orbiting instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface

    Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing

    Get PDF
    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications

    Assessment of optimal pathways for power generation system in Ghana

    Get PDF
    This study applied the Open Source Energy Modelling System (OSeMOSYS), an optimisation model for long term energy planning, which is integrated in Long-range Energy Alternatives Planning (LEAP) to develop optimal generation pathways and dispatch scheduling of selected generating technologies for power generation in Ghana. Simulating conventional and non-conventional energy technologies, the study examines the technological, economic and environmental implications of renewable energy policies from 2010 to 2040. Sensitivity analyses were undertaken to determine the effect of varied development in non-conventional renewable energy technologies investment cost as well as fuel prices. The findings suggest that, with a comprehensive implementation of energy efficiency and other strategies, renewable energy technologies can contribute more than 70% of the generation requirement in Ghana by 2040. This will result in significant economic and environmental benefits as well as sustainability of the energy sector

    Energy for a Shared Development Agenda: Global Scenarios and Governance Implications

    Get PDF
    This report combines a global assessment of energy scenarios up to 2050, case studies of energy access and low-carbon efforts around the world, and a review of the technological shifts, investments, policies and governance structures needed to bring energy to all. How can the world meet energy needs for human and economic development in a way that is compatible with sustainable development? What is required is nothing less than a massive transformation of energy systems and rapid turnovers of infrastructure and technology, all of which must be achieved while staying within climate and resource constraints. Though the challenge is great, the energy and sustainability scenarios in this report show that it can be met. However, while these scenarios sketch out transformation pathways in broad strokes, the devil is in the detail. This study also explores how to successfully implement change, via case studies of energy transformation and reviews of policy mechanisms and governance frameworks. Over the coming decade, policymakers around the world need to build a shared development agenda to address these challenges. It is hoped that this study will help to lay the foundations for such an effort

    Framework Report: The AIDS Accountability Workplace Scorecard, September 2011

    Get PDF
    The aim of the AIDS Accountability Workplace Scorecard is to improve HIV and AIDS workplace programmes in the countries and sectors most affected by the disease, and improve the health of employees, their families and communities. Through this initiative we will: / 1. Provide tools for HIV and AIDS workplace programme monitoring and evaluation AAI has developed scorecard tools for small, medium and large workplaces, which can be used to assess a global, regional or national HIV and AIDS programme or interventions at a specific workplace site. The scorecards can serve as both internal monitoring and evaluation tools and as assessments to present to stakeholders within and outside the organization. / 2. Publish annual Rankings of HIV and AIDS Workplace Programmes Scorecard users who wish to receive a ranking analysis and recommendations for how to improve their programmes can submit their scorecards to AAI. AAI ‘s ranking analysis will allow users to compare their performance with others and over time also measure their own progress. Respondents will be encouraged to publish their ranking in AAI’s yearly Ranking Reports. / 3. Share good practice The knowledge and good practices generated through the published rankings will be used to stimulate improved HIV and AIDS Workplace Programmes worldwide. Large networks of companies, trade union confederations, and national and international organizations can use the scorecard as a common framework for monitoring and evaluation of workplace programmes
    • …
    corecore