133 research outputs found

    A modified agar pad method for mycobacterial live-cell imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two general approaches to prokaryotic live-cell imaging have been employed to date, growing bacteria on thin agar pads or growing bacteria in micro-channels. The methods using agar pads 'sandwich' the cells between the agar pad on the bottom and a glass cover slip on top, before sealing the cover slip. The advantages of this technique are that it is simple and relatively inexpensive to set up. However, once the cover slip is sealed, the environmental conditions cannot be manipulated. Furthermore, desiccation of the agar pad, and the growth of cells in a sealed environment where the oxygen concentration will be in gradual decline, may not permit longer term studies such as those required for the slower growing mycobacteria.</p> <p>Findings</p> <p>We report here a modified agar pad method where the cells are sandwiched between a cover slip on the bottom and an agar pad on top of the cover slip (rather than the reverse) and the cells viewed from below using an inverted microscope. This critical modification overcomes some of the current limitations with agar pad methods and was used to produce time-lapse images and movies of cell growth for <it>Mycobacterium smegmatis </it>and <it>Mycobacterium bovis </it>BCG.</p> <p>Conclusions</p> <p>This method offers improvement on the current agar pad methods in that long term live cell imaging studies can be performed and modification of the media during the experiment is permitted.</p

    Characterization of a Mixed Methanotrophic Culture Capable of Chloroethylene Degradation

    Full text link
    A consortium of methanotrophs cultured from the St. Joseph's aquifer in Schoolcraft, MI, was found to exhibit similar methane consumption rates as pure cultures of methanotrophs. The methanotrophic consortium resides within a portion of the aquifer contaminated with a mixed waste plume of perchloroethylene (PCE) and its reductive dechlorination products from natural attenuation, trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride (VC). Oxidation kinetics for TCE, c-DCE, and VC were measured for the mixed methanotroph consortium and compared to reported rate parameters for degradation of these chloroethylene compounds by pure methanotrophic cultures. The results demonstrate that the kinetics of chloroethylene oxidation by the Schoolcraft methanotroph population mimic the degradation rates of pure methanotrophic cultures that primarily express particulate methane monooxygenase (pMMO). Molecular and biochemical analyses confirmed that sMMO was not being expressed by these cells. Rather, using competitive reverse transcriptionpolymerase chain reaction, pmoA, a gene encoding one of the polypeptides of the pMMO was found at a level of (1.57 ± 0.10) × 10–17 mol pmoA mRNA/g wet soil in soil slurries and (2.65 ± 0.43) × 10–17 mol pmoA mRNA/μl in groundwater. No expression of mmoX, a gene encoding one of the polypeptides of the sMMO, was detected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63398/1/ees.2005.22.177.pd

    C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12

    Get PDF
    The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host

    Characterization of Cg10062 from Corynebacterium glutamicum: Implications for the Evolution of cis-3-Chloroacrylic Acid Dehalogenase Activity in the Tautomerase Superfamily†

    Get PDF
    A 149-amino acid protein designated Cg10062 is encoded by a gene from Corynebacterium glutamicum. The physiological function of Cg10062 is unknown, and the gene encoding this protein has no obvious genomic context. Sequence analysis links Cg10062 to the cis-3-chloroacrylic acid dehalogenase (cis-CaaD) family, one of the five known families of the tautomerase superfamily. The characterized tautomerase superfamily members have two distinctive characteristics: a P-cc-p structure motif and a catalytic amino-terminal proline. Pro-1 is present in the Cg10062 amino acid sequence along with His-28, Arg-70, Arg-73, Tyr-103, and Glu-114, all of which have been implicated as critical residues for cis-CaaD activity. The gene for Cg10062 has been cloned and the protein overproduced, purified, and subjected to kinetic and mechanistic characterization. Like cis-CaaD, Cg10062 functions as a hydratase: it converts 2-oxo-3-pentynoate to acetopyruvate and processes 3-bromopropiolate to a species that inactivates the enzyme by acylation of Pro-1. Kinetic and (1)H NMR spectroscopic studies also show that Cg10062 processes both isomers of 3-chloroacrylic acid at low levels with a clear preference for the cis isomer. Pro-1 is critical for the dehalogenase and hydratase activities because the PIA mutant no longer catalyzes either reaction. The presence of the six key catalytic residues and the hydratase activity coupled with the absence of an efficient cis-CaaD activity and the lack of isomer specificity implicate factors beyond this core set of residues in cis-CaaD catalysis and specificity. This work sets the stage for in-depth mechanistic and structural studies of Cg10062, which could identify the additional features necessary for a fully active and highly specific cis-CaaD. Such results will also shed light on how cis-CaaD emerged in the tautomerase superfamily because Cg10062 could be characteristic of an intermediate along the evolutionary pathway for this dehalogenase

    Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement

    Get PDF
    A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells

    The perception of sexuality in older adults and its relationship with cognitive functioning

    No full text
    Objectives Investigating whether cognitive functioning is associated with the perception of one's sexuality in old age. Design Cross-sectional analysis, using observation cycle 2005/2006 of the population-based prospective cohort of the Longitudinal Aging Study Amsterdam. Setting Municipal registries in three Dutch regions. Participants 1,908 older adults (mean [standard deviation] age: 71 [8.87] years; 54% women). Measurements Sexuality and intimacy were assessed using four questions. Four cognitive domains were assessed: general cognitive functioning (Mini-Mental State Examination), memory performance (Auditory Verbal Learning Test), processing speed (Coding Task), and fluid intelligence (Raven's Coloured Progressive Matrices). Multinomial regression analysis was used, with sexuality as outcome. The interaction effect between gender and sexuality was also tested. Results Lower fluid intelligence was associated with perceiving sexuality as unimportant; lower general cognitive functioning was associated with perceiving sexuality as unimportant; and lower immediate memory recall was associated with evaluating sexual life as unpleasant. Associations were also found between lower fluid intelligence, processing speed, and general cognitive functioning, and agreeing with sexuality no longer being important. Lower processing speed, general cognitive functioning, and delayed memory recall were associated with disagreeing with a remaining need for intimacy when getting older. Finally, the association between fluid intelligence and perceiving sexuality as important, and the association between immediate memory recall score and evaluating sexual life as pleasant, was only significant in women. The association between lower general cognitive functioning and perceiving sexuality as unimportant seemed stronger in women compared with men. Conclusions Higher cognitive functioning was associated with the way in which older people perceive their current sexuality

    User-generated content behaviour of the dissatisfied service customer

    No full text
    Purpose: This study aims to focus on the motivation of service customers to create user-generated content (UGC) after a negative service experience. In examining this relationship, the moderating role of “extraversion” personality trait is also taken into consideration. Furthermore, the paper examines how differently motivated service customers react to a firm’s service recovery strategies, whilst insights into the relationship between UGC creation and specific online platform usage are also provided. Design/methodology/approach: Structural Equation Modeling is used to test the conceptual model, based on an empirical dataset collected from an online survey research of 239 service customers. The dataset pertains to international travellers and their UGC behaviour after a negative travel experience. Findings: Altruistic, vengeance and economic motivations are strong drivers for UGC creation after a negative service experience. Motivations also correlate to participation in specific online platforms. Furthermore, it is shown that highly extraverted customers create more UGC after a negative service experience when motivated by vengeance. Finally, higher levels of altruistic and self-enhancement motivations correlate with a positive attitude towards a firm’s response, whereas customers who are motivated by vengeance have a negative attitude towards a firm’s response. Practical implications: Customers who share their negative service experience by creating UGC in social media can be segmented according to their motivation. Service providers should inspect the UGC of their customers to understand the motivation behind it. The motivation to create UGC varies across platforms, and hence, customized service recovery strategies are required. Originality/value: This paper examines UGC creation in relation to motivation, extraversion, and attitude towards a firm’s response. This is the first reported application which collectively examines important issues like these in a unified theoretical framework

    Monooxygenase-Mediated 1,2-Dichloroethane Degradation by Pseudomonas sp. Strain DCA1

    No full text
    A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a K(m) value below the detection limit of 0.5 μM. Instead of a hydrolytic dehalogenation, as in other DCA utilizers, the first step in DCA degradation in strain DCA1 is an oxidation reaction. Oxygen and NAD(P)H are required for this initial step. Propene was converted to 1,2-epoxypropane by DCA-grown cells and competitively inhibited DCA degradation. We concluded that a monooxygenase is responsible for the first step in DCA degradation in strain DCA1. Oxidation of DCA probably results in the formation of the unstable intermediate 1,2-dichloroethanol, which spontaneously releases chloride, yielding chloroacetaldehyde. The DCA degradation pathway in strain DCA1 proceeds from chloroacetaldehyde via chloroacetic acid and presumably glycolic acid, which is similar to degradation routes observed in other DCA-utilizing bacteria
    corecore