58 research outputs found

    Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition

    Get PDF
    Laser beam directed energy deposition (DED-LB) is an attractive additive manufacturing technique to produce versatile and complex 3D structures on demand, apply a cladding, or repair local defects. However, the quality of manufactured parts is difficult to assess by inspection prior to completion, and parts must be extensively inspected post-production to ensure conformance. Consequently, critical defects occurring during the build go undetected. In this work, a new monitoring system combining three infrared cameras along different optical axes capable of monitoring melt pool geometry and vertical displacement throughout deposition is reported. By combining multiple sensor data, an automated algorithm is developed which is capable of identifying the formation of structural features and defects. An intersecting, thin-walled geometry is used to demonstrate the capability of the system to detect process-induced porosity in samples with narrow intersection angles, which is validated using micro-CT observations. The recorded results indicate the root cause of this process-induced porosity at the intersection, and it is shown that advanced toolpath planning can eliminate such defects. The presented methodology demonstrates the value of multi-axis monitoring for identifying both defects and structural features, providing an advancement towards automated detection and alert systems in DED-LB

    Comparing index-based vulnerability assessments in the Mississippi Delta: Implications of contrasting theories, indicators, and aggregation methodologies

    Get PDF
    There are many index-based approaches for assessing vulnerability to socio-natural hazards with differences in underlying theory, indicator selection and aggregation methodology. Spatially explicit output scores depend on these characteristics and contrasting approaches can therefore lead to very different policy implications. These discrepancies call for more critical reflection on index design and utility, a discussion that has not kept pace with the impetus for vulnerability assessments and respective index creation and application following the Hyogo Framework for Action 2005–2015. Comparing index outputs is an effective approach in this regard. Here, the Social Vulnerability Index (SoVI®) and the vulnerability component of the Global Delta Risk Index (GDRI) are applied at census tract level in the Mississippi Delta and visually and quantitatively compared. While the SoVI® is grounded in the hazard/risk research paradigm with primarily socio-economic indicators and an inductive principal component methodology, the GDRI incorporates advancements from sustainability science with ecosystem-based indicators and a modular hierarchical design. Maps, class rank changes, and correlations are used to assess the convergence and divergence of these indexes across the delta. Results show that while very different theoretical frameworks influence scores through indicator selection, methodology of index calculation has an even greater effect on output. Within aggregative methodology, the treatment of inter-indicator correlation is decisive. Implications include the need for an increased focus on index methodology and validation of results, transparency, and critical reflection regarding assessment limitations, as our results imply that contradictory risk reduction policies could be considered depending on the assessment methodology used

    Interferon β-1a in relapsing multiple sclerosis: four-year extension of the European IFNβ-1a Dose-C omparison Study

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic disease requiring long-term monitoring of treatment. Objective: To assess the four-year clinical efficacy of intramuscular (IM) IFNb-1a in patients with relapsing MS from the European IFNb-1a Dose-C omparison Study. Methods: Patients who completed 36 months of treatment (Part 1) of the European IFNb-1a Dose-C omparison Study were given the option to continue double-blind treatment with IFNb-1a 30 mcg or 60 mcg IM once weekly (Part 2). Analyses of 48-month data were performed on sustained disability progression, relapses, and neutralizing antibody (NA b) formation. Results: O f 608/802 subjects who completed 36 months of treatment, 493 subjects continued treatment and 446 completed 48 months of treatment and follow-up. IFNb-1a 30 mcg and 60 mcg IM once weekly were equally effective for up to 48 months. There were no significant differences between doses over 48 months on any of the clinical endpoints, including rate of disability progression, cumulative percentage of patients who progressed (48 and 43, respectively), and annual relapse rates; relapses tended to decrease over 48 months. The incidence of patients who were positive for NAbs at any time during the study was low in both treatment groups. Conclusion: C ompared with 60-mcg IM IFNb-1a once weekly, a dose of 30 mcg IM IFNb-1a once weekly maintains the same clinical efficacy over four years

    Addressing vulnerability, building resilience:community-based adaptation to vector-borne diseases in the context of global change

    Get PDF
    Abstract Background The threat of a rapidly changing planet – of coupled social, environmental and climatic change – pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. Main body In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. Conclusion In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present

    Assessing the social vulnerability to malaria in Rwanda

    Full text link

    Pharmacological treatment options for mast cell activation disease

    Get PDF

    Field studies of isoprene emissions from vegetation in the north-western Mediterranean region.

    No full text
    During the Biogenic Emissions in the Mediterranean Area (BEMA) project field campaigns (1993 - 1997), 40 native Mediterranean plant species were screened for emissions of isoprene and monoterpenes using a branch enclosure sampling method with subsequent gas chromatographic-flame ionization detector (GC-FID) and GC-mass selective detector (MS) analysis. Thirteen species emitted more than 0.5 μg (C) g−1 dw h−1 isoprene at 30°C and 1000 μmol m−2 s−1 photosynthetically active radiation (PAR), of which nine species emitted more than 20 μg (C) g−1 dw h−1. Emissions of isoprene were strongly correlated with temperature and PAR, and were reasonably well predicted by existing algorithms. There was little intraspecies and day to day variation in base emission rates. In general, median base emission rates were higher in summer compared to autumn for most species. Significant difference in aggregated habitat base emission rates was found between dunes, garrigue, woodland, and riverside sample sites. Although considerable unexplained variability in base emission rates remains to be explored, first estimates of base emission rates for Mediterranean shrublands are presented here

    Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition

    No full text
    Abstract Laser beam directed energy deposition (DED-LB) is an attractive additive manufacturing technique to produce versatile and complex 3D structures on demand, apply a cladding, or repair local defects. However, the quality of manufactured parts is difficult to assess by inspection prior to completion, and parts must be extensively inspected post-production to ensure conformance. Consequently, critical defects occurring during the build go undetected. In this work, a new monitoring system combining three infrared cameras along different optical axes capable of monitoring melt pool geometry and vertical displacement throughout deposition is reported. By combining multiple sensor data, an automated algorithm is developed which is capable of identifying the formation of structural features and defects. An intersecting, thin-walled geometry is used to demonstrate the capability of the system to detect process-induced porosity in samples with narrow intersection angles, which is validated using micro-CT observations. The recorded results indicate the root cause of this process-induced porosity at the intersection, and it is shown that advanced toolpath planning can eliminate such defects. The presented methodology demonstrates the value of multi-axis monitoring for identifying both defects and structural features, providing an advancement towards automated detection and alert systems in DED-LB
    corecore