326 research outputs found

    Vulnerability of vascular endothelium in lipopolysaccharide toxicity: effect of (acyl) carnitine on endothelial stability

    Get PDF
    The literature presented illustrates that lipopolysaccharide (LPS), from bacterial cell walls, induces tumour necrosis factor (TNF) synthesis in macrophages. TNF affects a number of cell types, amongst which are endothelial cells, within a few hours. Its injection has been shown to produce all symptoms of the toxic syndrome. In the present communication the vulnerability of endothelial cells will be stressed. These cells require carnitine not only for fatty acid oxidation but also for membrane protection and repair. As endothelial cells lose carnitine during hypoperfusion, it is speculated that the supply of carnitine during the early phase of LPS toxicity in rats might delay or avoid loss of endothelial functions. Earlier it was observed that hearts from rats, injected 3 h previously with LPS, showed strongly increased interstitial fluid production compared to hearts from control rats, even when TNF was present during a 3 h in vitro perfusion. It showed that LPS in vivo generates factors other than TNF, such as platelet activating factor (PAF), that are responsible for the increased capillary permeability

    Imminent ischemia in normal and hypertrophic Langendorff rat hearts; effects of fatty acids and superoxyde dismutase monitored by NADH surface fluorescence

    Get PDF
    Hypertrophic hearts contain areas of hypoperfusion which can be visualized by increased NADH surface fluorescence during in vitro perfusion without oxygen-carrying particles under constant pressure and pacing. By contrast, fluorescence remained low when non-hypertrophic hearts were used instead. When during perfusion of normal hearts the pH of the medium was lowered from 7.5 to 7.0, areas of high fluorescence appeared in a few minutes. The high fluorescent areas under conditions of cardiac hypertrophy or pH 7.0 perfusion could be reduced by addtion of superoxide dismutase. It indicates that oxygen free radicals interfere with proper flow regulation in areas of low pH. Fluorescence in hypertrophic hearts also diminished during addition of albumin-bound oleate to the standard, glucose-containing, medium. This is in agreement with our earlier findin of fatty acid protection from acidosis-initiated loss of capillary flow (Biochim. Biophys. Acta, 1033 (1990) 214–218). In contrast to low concentrations of free fatty acids, high concentrations interfere with tissue oxygenation. This has been illustrated by the use of 1 mM octanoate, which after a few min caused the appearance of high fluorescent areas. We conclude that decompensation of flow in hypoperfused areas of heart, as occurs in hypertrophy, may be stimulated by acidosis and oxygen free radicals

    NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes

    Get PDF
    POM121 and gp210 were, until this point, the only known membrane-integral nucleoporins (Nups) of vertebrates and, thus, the only candidate anchors for nuclear pore complexes (NPCs) within the nuclear membrane. In an accompanying study (see Stavru et al. on p. 477 of this issue), we provided evidence that NPCs can exist independently of POM121 and gp210, and we predicted that vertebrate NPCs contain additional membrane-integral constituents. We identify such an additional membrane protein in the NPCs of mammals, frogs, insects, and nematodes as the orthologue to yeast Ndc1p/Cut11p. Human NDC1 (hNDC1) likely possesses six transmembrane segments, and it is located at the nuclear pore wall. Depletion of hNDC1 from human HeLa cells interferes with the assembly of phenylalanine-glycine repeat Nups into NPCs. The loss of NDC1 function in Caenorhabditis elegans also causes severe NPC defects and very high larval and embryonic mortality. However, it is not ultimately lethal. Instead, homozygous NDC1-deficient worms can be propagated. This indicates that none of the membrane-integral Nups is universally essential for NPC assembly, and suggests that NPC biogenesis is an extremely fault-tolerant process

    The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes

    No full text
    Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00429-013-0645-0) contains supplementary material, which is available to authorized users

    X-ray based lung function measurement - a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    No full text
    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy

    The Conserved Nup107-160 Complex Is Critical for Nuclear Pore Complex Assembly

    Get PDF
    AbstractNuclear pore complexes (NPCs) are large multiprotein assemblies that allow traffic between the cytoplasm and the nucleus. During mitosis in higher eukaryotes, the Nuclear Envelope (NE) breaks down and NPCs disassemble. How NPCs reassemble and incorporate into the NE upon mitotic exit is poorly understood. We demonstrate a function for the conserved Nup107-160 complex in this process. Partial in vivo depletion of Nup133 or Nup107 via RNAi in HeLa cells resulted in reduced levels of multiple nucleoporins and decreased NPC density in the NE. Immunodepletion of the entire Nup107-160 complex from in vitro nuclear assembly reactions produced nuclei with a continuous NE but no NPCs. This phenotype was reversible only if Nup107-160 complex was readded before closed NE formation. Depletion also prevented association of FG-repeat nucleoporins with chromatin. We propose a stepwise model in which postmitotic NPC assembly initiates on chromatin via early recruitment of the Nup107-160 complex

    The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

    Get PDF
    This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows

    Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices

    Get PDF
    Neuronal activity in the respiratory network is functionally dependent on inhibitory synaptic transmission. Using two-photon excitation microscopy, we analyzed the integration of glycinergic neurons in the isolated inspiratory pre-Bötzinger complex-driven network of the rhythmic slice preparation. Inspiratory (96%) and ‘tonic’ expiratory neurons (4%) were identified via an increase or decrease, respectively, of the cytosolic free calcium concentration during the inspiratory-related respiratory burst. Furthermore, in BAC-transgenic mice expressing EGFP under the control of the GlyT2-promoter, 50% of calcium-imaged inspiratory neurons were glycinergic. Inspiratory bursting of glycinergic neurons in the slice was confirmed by whole-cell recording. We also found glycinergic neurons that receive phasic inhibition from other glycinergic neurons. Our calcium imaging data show that glycinergic neurons comprise a large population of inspiratory neurons in the pre-Bötzinger complex-driven network of the rhythmic slice preparation
    corecore