36 research outputs found

    Experimental evidence of s-wave superconductivity in bulk CaC6_{6}

    Full text link
    The temperature dependence of the in-plane magnetic penetration depth, λab(T)\lambda_{ab}(T), has been measured in a c-axis oriented polycrystalline CaC6_{6} bulk sample using a high-resolution mutual inductance technique. A clear exponential behavior of λab(T)\lambda_{ab}(T) has been observed at low temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the standard BCS theory yields λab(0)=(720±80)\lambda_{ab}(0)=(720\pm 80) Angstroem and Δ(0)=(1.79±0.08)\Delta(0)=(1.79\pm 0.08) meV. The ratio 2Δ(0)/kBTc=(3.6±0.2)2\Delta(0)/k_{_B}T_{c}=(3.6\pm 0.2) gives indication for a conventional weakly coupled superconductor.Comment: To appear in Phys. Rev. Let

    Crystal structure and chemistry of barium-graphite intercalation compounds

    Get PDF
    Graphite can accommodate various chemical species between graphene layers to form graphite intercalation compounds (GIC) [1]. Alkali metals can easily lead to bulk stage-1 intercalation compounds by vapor transport but for more electronegative elements, such as alkaline-earth metals or lanthanides, only a superficial intercalation is obtained and other synthesis methods have to be envisaged. Molten alloys, formed between an alkali metal and the targeted metal, have demonstrated their efficiency to prepare bulk and homogeneous GIC from these latter elements, for example the superconducting CaC6 phase [2], but some elements remain difficult to intercalate by this method. More recently, our team developed a method based on the work of Hagiwara et al., consisting in using a LiCl-KCl eutectic molten medium [3], which for example allowed to prepare for the first time a bulk SrC6 compound [4]. This work is focused on the intercalation of barium into graphite from the LiCl-KCl molten salts method. A bulk stage-1 BaC6 compound has been prepared and X-ray diffraction measurements confirmed its crystal structure [5]. Moreover, by varying the experimental conditions, two completely novel phases, denoted α and β, have been isolated. From ion beam analyses, Li0,2K0,6Ba0,35C6 and Li0,2K0,75Ba0,6C6 chemical formulae have been determined for α and β phases, respectively, showing that lithium and potassium are intercalated together with barium. X- ray diffraction led to the determination of the stacking sequence of each compound, and their planar unit cells. Lastly, a reaction mechanism is proposed, which explains the formation of the different phases observed in this study

    Superconductivity of bulk CaC6

    Full text link
    We have obtained bulk samples of the graphite intercalation compound, CaC6, by a novel method of synthesis from highly oriented pyrolytic graphite. The crystal structure has been completely determined showing that it is the only member of the MC6, metal-graphite compounds, which has rhombohedral symmetry. We have clearly shown the occurrence of superconductivity in the bulk sample at 11.5K, using magnetization measurements.Comment: 8 pages of text + 4 figures = 12 page

    The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling

    Get PDF
    The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin–Benson–Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids—a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.ISSN:1040-4651ISSN:1531-298XISSN:1532-298

    Microwave losses of bulk CaC6

    Full text link
    We report a study of the temperature dependence of the surface resistance RS in the graphite intercalated compound (GIC) CaC6, where superconductivity at 11.5 K was recently discovered. Experiments are carried out using a copper dielectrically loaded cavity operating at 7 GHz in a "hot finger" configuration. Bulk CaC6 samples have been synthesized from highly oriented pyrolytic graphite. Microwave data allows to extract unique information on the quasiparticle density and on the nature of pairing in superconductors. The analysis of RS(T) confirms our recent experimental findings that CaC6 behaves as a weakly-coupled, fully gapped, superconductor.Comment: 2 pages, submitted to Physica C (M2S-HTSC 2006 Proceedings

    Original synthesis route of bulk binary superconducting graphite intercalation compounds with strontium, barium and ytterbium

    No full text
    International audienceThanks to its lamellar structure, graphite can host various chemical species between its interplanar spaces to form Graphite Intercalation Compounds (GIC). Intercalation of metals into graphite can lead to remarkable modifications of the physical properties of the sample with respect to pristine graphite as for instance superconductivity. In this paper, we report attempts made to intercalate strontium, baryum and ytterbium into graphite, using a recent method involving a LiCl-KCl molten salt as a reaction medium. Resulting samples are characterized regarding their structure and chemical composition. We reveal the obtaining of bulk SrC6_6 and BaC6_6 and a superficial intercalation of ytterbium leading to superconducting YbC6_6 domains only, as confirmed by dc-magnetization measurements
    corecore