415 research outputs found

    Rapid changes in root HvPIP2; 2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand

    Get PDF
    To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (Lp(Root)) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WTplants were capable of maintaining leaf water potential (psi(L)) that was likely due to increased Lp(Root) enabling higher water flow from the roots, which increased in response to air warming. The increased Lp(Root) and immunostaining for HvPIP2; 2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain psi(L) during air warming may be due to lower Lp(Root) than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and Lp(Root) was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10(-5) M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration

    Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34

    Get PDF
    Background and Aims Regulation of water channel aquaporins (AQPs) provides another mechanism by which abscisic acid (ABA) may influence water flow through plants. To the best of our knowledge, no studies have addressed the changes in ABA levels, the abundance of AQPs and root cell hydraulic conductivity (Lp(Cell)) in the same tissues. Thus, we followed the mechanisms by which ABA affects root hydraulics in an ABA-deficient barley mutant Az34 and its parental line 'Steptoe'. We compared the abundance of AQPs and ABA in cells to determine spatial correlations between AQP abundance and local ABA concentrations in different root tissues. In addition, abundance of AQPs and ABA in cortex cells was related to Lp(Cell). Methods Root hydraulic conductivity (Lp(Root)) was measured by means of root exudation analyses and Lp(Cell) using a cell pressure probe. The abundance of ABA and AQPs in root tissues was assessed through immunohistochemical analyses. Isoform-specific antibodies raised against HvPIP2; 1, HvPIP2; 2 and HvPIP2; 5 were used. Key Results Immunolocalization revealed lower ABA levels in root tissues of Az34 compared with ` Steptoe'. Root hydraulic conductivity (Lp(Root)) was lower in Az34, yet the abundance of HvPIPs in root tissues was similar in the two genotypes. Root hair formation occurred closer to the tip, while the length of the root hair zone was shorter in Az34 than in ` Steptoe'. Application of external ABA to the root medium of Az34 and ` Steptoe' increased the immunostaining of root cells for ABA and for HvPIP2; 1 and HvPIP2; 2 especially in root epidermal cells and the cortical cell layer located beneath, parallel to an increase in Lp(Root) and Lp(Cell). Treatment of roots with Fenton reagent, which inhibits AQP activity, prevented the ABA-induced increase in root hydraulic conductivity. Conclusion Shortly after (<2 h) ABA application to the roots of ABA-deficient barley, increased tissue ABA concentrations and AQP abundance (especially the plasma-membrane localized isoforms HvPIP2;1 and HvPIP2;2) were spatially correlated in root epidermal cells and the cortical cell layer located beneath, in conjunction with increased LpCell of the cortical cells. In contrast, long-term ABA deficiency throughout seedling development affects root hydraulics through other mechanisms, in particular the developmental timing of the formation of root hairs closer to the root tip and the length of the root hair zone

    Assessment of Surrogate Markers for Cardiovascular Disease in Familial Mediterranean Fever-Related Amyloidosis Patients Homozygous for M694V Mutation in MEFV Gene

    Get PDF
    Cardiovascular disease (CVD) remains underestimated in familial Mediterranean fever-associated AA amyloidosis (FMF-AA). We aimed to compare early markers of endothelial dysfunction and atherosclerosis in FMF-AA with a homozygous M694V mutation (Group 1 = 76 patients) in the Mediterranean fever (MEFV) gene and in patients with other genotypes (Group 2 = 93 patients). Measures of increased risk for future CVD events and endothelial dysfunction, including flow-mediated dilatation (FMD), pentraxin-3 (PTX3), and carotid intima-media thickness (cIMT), and fibroblast growth factor 23 (FGF23) as a marker of atherosclerotic vascular disease were compared between groups. The frequency of clinical FMF manifestations did not differ between the two groups apart from arthritis (76.3% in Group 1 and 59.1% in Group 2, p \u3c 0.05). FMD was significantly lower in Group 1 when compared with Group 2 (MD [95% CI]: −0.6 [(−0.89)–(−0.31)]). cIMT, FGF23, and PTX3 levels were higher in Group 1 (cIMT MD [95% CI]: 0.12 [0.08–0.16]; FGF23 MD [95% CI]: 12.8 [5.9–19.6]; PTX3 MD [95% CI]: 13.3 [8.9–17.5]). In patients with FMF-AA, M694V homozygosity is associated with lower FMD values and higher cIMT, FGF23, and PTX3 levels, suggesting increased CVD risk profiles. These data suggest that a genotype–phenotype association exists in terms of endothelial dysfunction and atherosclerosis in patients with FMF-AA

    Assessment of Surrogate Markers for Cardiovascular Disease in Familial Mediterranean Fever-Related Amyloidosis Patients Homozygous for M694V Mutation in MEFV Gene

    Get PDF
    Cardiovascular disease (CVD) remains underestimated in familial Mediterranean fever-associated AA amyloidosis (FMF-AA). We aimed to compare early markers of endothelial dysfunction and atherosclerosis in FMF-AA with a homozygous M694V mutation (Group 1 = 76 patients) in the Mediterranean fever (MEFV) gene and in patients with other genotypes (Group 2 = 93 patients). Measures of increased risk for future CVD events and endothelial dysfunction, including flow-mediated dilatation (FMD), pentraxin-3 (PTX3), and carotid intima-media thickness (cIMT), and fibroblast growth factor 23 (FGF23) as a marker of atherosclerotic vascular disease were compared between groups. The frequency of clinical FMF manifestations did not differ between the two groups apart from arthritis (76.3% in Group 1 and 59.1% in Group 2, p \u3c 0.05). FMD was significantly lower in Group 1 when compared with Group 2 (MD [95% CI]: −0.6 [(−0.89)–(−0.31)]). cIMT, FGF23, and PTX3 levels were higher in Group 1 (cIMT MD [95% CI]: 0.12 [0.08–0.16]; FGF23 MD [95% CI]: 12.8 [5.9–19.6]; PTX3 MD [95% CI]: 13.3 [8.9–17.5]). In patients with FMF-AA, M694V homozygosity is associated with lower FMD values and higher cIMT, FGF23, and PTX3 levels, suggesting increased CVD risk profiles. These data suggest that a genotype–phenotype association exists in terms of endothelial dysfunction and atherosclerosis in patients with FMF-AA

    Scleral Proteome in Noninfectious Scleritis Unravels Upregulation of Filaggrin-2 and Signs of Neovascularization

    Get PDF
    Purpose: Scleritis is a severe inflammatory ocular disorder with unknown pathogenesis. We investigated healthy sclera as well as sclera affected by noninfectious scleritis for differentially expressed proteins using a mass spectrometry approach. Methods: We collected scleral samples of enucleated eyes due to severe noninfectious scleritis (n = 3), and control scleral tissues (n = 5), all exenterated eyes for eyelid carcinomas (n = 4), or choroidal melanoma (n = 1) without scleral invasion. Samples were prepared for the nano liquid-chromatography mass spectrometer (LC-MS), data were analyzed using proteomics software (Scaffold), and is available via ProteomeXchange (identifier PXD038727). Samples were also stained for immuno-histopathological evaluation. Results: Mass spectrometry identified 629 proteins within the healthy and diseased scleral tissues, whereof collagen type XII, VI, and I were the most abundantly expressed protein. Collagen type II-XII was also present. Filaggrin-2, a protein that plays a crucial role in epidermal barrier function, was found upregulated in all scleritis cases. In addition, other epithelial associated proteins were upregulated (such as keratin 33b, 34, and 85, epiplakin, transglutaminase-3, galectin 7, and caspase-14) in scleritis. Further, upregulated proteins involved in regulation of the cytoskeleton (vinculin and myosin 9), and housekeeping proteins were found (elongation factor-2 and cytoplasmic dynein 1) in our study. Upregulation of filaggrin-2 and myosin-9 was confirmed with immunohistochemistry, the latter protein showing co-localization with the endothelial cell marker ETC-related gene (ERG), indicating neovascularization in scleral tissue affected by scleritis. Conclusions: We found upregulation of filaggrin-2 and signs of neovascularization in scleral tissue of patients with noninfectious scleritis. Further research, ideally including more scleritis cases, is needed to validate our findings.</p

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base
    corecore