765 research outputs found

    The host inflammatory response to a xenograft arterial bypass in a rabbit model

    Get PDF

    Nonlocal entanglement of coherent states, complementarity, and quantum erasure

    Get PDF
    We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a which path experiment, and in the case of only one external field, we describe the implementation of a quantum eraser

    Timing of pair production in time-dependent force fields

    Get PDF
    We examine the creation and annihilation dynamics for electron-positron pairs in a time-dependent but subcritical electric force using a simplified model system. Numerical and semianalytical solutions to computational quantum field theory show that despite the continuity of the quantum field operator in time, the actual number of created particles can change in a discontinuous way if the field changes abruptly. The number of permanently created particles after the pulse, however, increases continuously with the duration of the electric field pulse, suggesting a transition from an exclusive annihilation to a creation regime

    Locality in the creation of electron-positron pairs

    Get PDF
    We examine the mathematical solutions of the Dirac equation to predict the spontaneous electron-positron pair creation from the vacuum. The Dirac equation contains a position and time-dependent scalar potential to approximate the effect of an external force on the vacuum. We focus on forces that are localized in space as well as in time and find that the resulting creation process is also localized in time but delocalized in space. This illustrates that the Dirac equation can show nonlocal behavior as it predicts that particles can be created even in spatial regions where the force is zero. We also examine the spatial distribution of the created particles and show that for spatially extended force fields it is proportional to the square of the position dependence of the force. But when the force field is narrower than the Compton wavelength, the created electron density approaches a universal shape invariant form that is independent of the strength of the force for sufficiently weak field strength

    Unitary and nonunitary approaches in quantum field theory

    Get PDF
    We use a simplified essential state model to compare two quantum field theoretical approaches to study the creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a state with different numbers of particles that is described by occupation numbers and evolves with conserved norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed number of particles but time-dependent norms. As an example to illustrate the differences between both approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an electron-positron pair from vacuum in the presence of an initial electron. We demonstrate how the Pauli blocking by the initial electron comes at the expense of a gain in entanglement of this electron with the created electron as well as with the created positron

    The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary

    Get PDF
    A major trough ("Belgica Trough") eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ("Belgica TMF") on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/sub-sea ice, and 4) seasonal open-marine. In the seasonal open-marine fades we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess Pb-210 activity at three core sites and 44 AMS C-14 dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-) fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO C-14 ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after similar to 36.0 corrected C-14 ka before present (B.P.). It retreated from the outer shelf at similar to 25.5 ka B.P, the middle shelf at similar to 19.8 ka B.P., the inner shelf in Eltanin Bay at similar to 12.3 ka B.P., and the inner shelf in Ronne Entrance at similar to 6.3 ka B.P. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work. (C) 2010 Elsevier Ltd. All rights reserved

    Entanglement and interference between different degrees of freedom of photons states

    Full text link
    In this paper, photonic entanglement and interference are described and analyzed with the language of quantum information process. Correspondingly, a photon state involving several degrees of freedom is represented in a new expression based on the permutation symmetry of bosons. In this expression, each degree of freedom of a single photon is regarded as a qubit and operations on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well interpreted with it. Moreover, the analysis reveals the entanglement between different degrees of freedom in a four-photon state from parametric down conversion, even if there is no entanglement between them in the two-photon state. The entanglement will decrease the state purity and photon interference visibility in the experiments on a four-photon polarization state.Comment: 11 pages and 2 figure

    Schmidt number of pure bi-partite entangled states and methods of its calculation

    Full text link
    An entanglement measure for pure-state continuous-variable bi-partite problem, the Schmidt number, is analytically calculated for one simple model of atom-field scattering.Comment: 3 pages, 1 figure; based on the poster presentation reported on the 11th International Conference on Quantum Optics (ICQO'2006, Minsk, May 26 -- 31, 2006), to be published in special issue of Optics and Spectroscop

    Pair creation for bosons in electric and magnetic fields

    Get PDF
    By solving the quantum field theoretical version of the Klein-Gordon equation numerically, we study the creation process for charged boson-antiboson pairs in static electric and magnetic fields. The fields are perpendicular to each other and spatially localized along the same direction, which permits us to study the crucial impact of the magnetic field\u27s spatial extension on dynamics. If its width is comparable to that of the electric field, we find a magnetically induced Lorentz suppression of the pair-creation process. When the width is increased such that the created bosons can revisit the interaction region, we find a region of exponential self-amplification that can be attributed to a spontaneous emissionlike enhancement. If the width is increased further, this trend is reversed and the magnetic field can even shut off the particle production completely
    corecore