2,834 research outputs found

    Electronic structure of Fe and magnetism in the 3d/5d3d/5d double perovskites Ca2_2FeReO6_6 and Ba2_2FeReO6_6

    Get PDF
    The Fe electronic structure and magnetism in (i) monoclinic Ca2_2FeReO6_6 with a metal-insulator transition at TMI∼140T_{MI} \sim 140 K and (ii) quasi-cubic half-metallic Ba2_2FeReO6_6 ceramic double perovskites are probed by soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD). These materials show distinct Fe L2,3L_{2,3} XAS and XMCD spectra, which are primarily associated with their different average Fe oxidation states (close to Fe3+^{3+} for Ca2_2FeReO6_6 and intermediate between Fe2+^{2+} and Fe3+^{3+} for Ba2_2FeReO6_6) despite being related by an isoelectronic (Ca2+^{2+}/Ba2+^{2+}) substitution. For Ca2_2FeReO6_6, the powder-averaged Fe spin moment along the field direction (B=5B = 5 T), as probed by the XMCD experiment, is strongly reduced in comparison with the spontaneous Fe moment previously obtained by neutron diffraction, consistent with a scenario where the magnetic moments are constrained to remain within an easy plane. For B=1B=1 T, the unsaturated XMCD signal is reduced below TMIT_{MI} consistent with a magnetic transition to an easy-axis state that further reduces the powder-averaged magnetization in the field direction. For Ba2_2FeReO6_6, the field-aligned Fe spins are larger than for Ca2_2FeReO6_6 (B=5B=5 T) and the temperature dependence of the Fe magnetic moment is consistent with the magnetic ordering transition at TCBa=305T_C^{Ba} = 305 K. Our results illustrate the dramatic influence of the specific spin-orbital configuration of Re 5d5d electrons on the Fe 3d3d local magnetism of these Fe/Re double perovskites.Comment: 7 pages, 3 figure

    On the Balance of Intercalation and Conversion Reactions in Battery Cathodes

    Full text link
    We present a thermodynamic analysis of the driving forces for intercalation and conversion reactions in battery cathodes across a range of possible working ion, transition metal, and anion chemistries. Using this body of results, we analyze the importance of polymorph selection as well as chemical composition on the ability of a host cathode to support intercalation reactions. We find that the accessibility of high energy charged polymorphs in oxides generally leads to larger intercalation voltages favoring intercalation reactions, whereas sulfides and selenides tend to favor conversion reactions. Furthermore, we observe that Cr-containing cathodes favor intercalation more strongly than those with other transition metals. Finally, we conclude that two-electron reduction of transition metals (as is possible with the intercalation of a 2+2+ ion) will favor conversion reactions in the compositions we studied

    The Yoneda algebra of a graded Ore extension

    Full text link
    Let A be a connected-graded algebra with trivial module k, and let B be a graded Ore extension of A. We relate the structure of the Yoneda algebra E(A) := Ext_A(k,k) to E(B). Cassidy and Shelton have shown that when A satisfies their K_2 property, B will also be K_2. We prove the converse of this result.Comment: 9 page

    Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev

    Get PDF
    A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV
    • …
    corecore