375 research outputs found

    First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

    Get PDF
    The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example for two mirrors telescope for Cherenkov Astronomy. This configuration permits to (i) maintain a high optical quality across a large FoV (ii) de-magnify the plate scale, (iii) exploit new technological solutions for focal plane sensors. The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the PSF sizes generated in the focal plane at various distance from the optical axis. These values have been compared with the performances expected by design. After an introduction on the Gamma Astronomy from the ground, the optical design and how it has been implemented for ASTRI SST-2M is discussed. Moreover the description of the setup used to qualify the telescope over the full field of view is shown. We report the results of the first--light optical qualification. The required specification of a flat PSF of 10\sim 10 arcmin in a large field of view ~10 deg has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma ray Astronomy and, in particular, for the detection of high energy (5 - 300 TeV) gamma rays and wide-field observations with CTA.Comment: 6 pages, 5 figure

    Polarimetric survey of asteroids with the Asiago telescope

    Get PDF
    We present the first results of an asteroid photo--polarimetry program started at Asiago--Cima Ekar Observatory. The aim of our survey is to estimate diversity in polarimetric properties of asteroids belonging to different taxonomic and dynamical classes. The data were obtained with the polarization analyser placed inside the Faint Object Spectrographic Camera (AFOSC) of the 1.8m telescope. This instrument allows simultaneous measurements of the two first Stokes parameters without any lambda/2 retarding plate. Our survey began in 2002, and up to now we have obtained data on a sample of 36 asteroids; most of them are being investigated with the polarimetric technique for the first time. Combining our data with those already available in literature, we present an estimate of the inversion angle for 7 asteroids in this paper. Furthermore, we present the polarimetric measurements of the rare asteroid classes belonging to the A and D types and a detailed VRI observations at extremely small phase angles of the low albedo asteroid 1021 Flammari

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling

    The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event

    Full text link
    Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf orbiting in a triple system. An Earth-mass planet with an 11 day period has been discovered around this star. The star's mass has been estimated only indirectly using a mass-luminosity relation, meaning that large uncertainties affect our knowledge of its properties. To refine the mass estimate, an independent method has been proposed: gravitational microlensing. By taking advantage of the close passage of Proxima Cen in front of two background stars, it is possible to measure the astrometric shift caused by the microlensing effect due to these close encounters and estimate the gravitational mass of the lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact parameters, the closest approach of Proxima Cen to the background star, of 1\farcs6 ±\pm 0\farcs1 and 0\farcs5 ±\pm 0\farcs1, respectively. Accurate measurements of the positions of the background stars during the last two years have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The SPHERE campaign started on March 2015, and continued for more than two years, covering 9 epochs. The parameters of Proxima Centauri's motion on the sky, along with the pixel scale, true North, and centering of the instrument detector were readjusted for each epoch using the background stars visible in the IRDIS field of view. The experiment has been successful and the astrometric shift caused by the microlensing effect has been measured for the second event in 2016. We used this measurement to derive a mass of 0.1500.051+0.062^{\textrm{+}0.062}_{-0.051} (an error of \sim 40\%) \MSun for Proxima Centauri acting as a lens. This is the first and the only currently possible measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA

    Buschke-Ollendorff Syndrome Associated with Elevated Elastin Production by Affected Skin Fibroblasts in Culture

    Get PDF
    Buschke-Ollendorff syndrome (BOS; McKusick 16670) is an autosomal dominant connective-tissue disorder characterized by uneven osseous formation in bone (osteopoikilosis) and fibrous skin papules (dermatofibrosis lenticularis disseminata). We describe two patients in whom BOS occurred in an autosomal dominant inheritance pattern. The connective tissue of the skin lesions showed both collagen and elastin abnormalities by electron microscopy. Cultured fibroblasts from both patients produced 2–8 times more tropoelastin than normal skin fibroblasts in the presence of 10% calf serum. Involved skin flbroblasts of one patient produced up to eight times normal levels, whereas apparently uninvolved skin was also elevated more than threefold. In a second patient, whose involvement was nearly complete, elastin production was high in involved areas and less so in completely involved skin. Transforming growth factor-β1 (TGFβ1), a powerful stimulus for elastin production, brought about similar relative increases in normal and BOS strains. Basic fibroblast growth factor, an antagonist of TGFβ1-stimulated elastin production, was able to reduce elastin production in basal and TGFβ1 stimulated BOS strains. Elastin mRNA levels were elevated in all patient strains, suggesting that Buschke-Ollendorff syndrome may result, at least in part, from abnormal regulation of extracellular matrix metabolism that leads to increased steady-state levels of elastin mRNA and elastin accumulation in the dermis

    Value Iteration for Long-run Average Reward in Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks
    corecore