85 research outputs found

    PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition

    Get PDF
    Avoidance of photoinhibition at photosystem (PS)I is based on synchronized function of PSII, PSI, Cytochrome b(6)f and stromal electron acceptors. Here, we used a special light regime, PSI photoinhibition treatment (PIT), in order to specifically inhibit PSI by accumulating excess electrons at the photosystem (Tikkanen and Grebe, 2018). In the analysis, Arabidopsis thaliana WT was compared to the pgr5 and ndho mutants, deficient in one of the two main cyclic electron transfer pathways described to function as protective alternative electron acceptors of PSI. The aim was to investigate whether the PGR5 (pgr5) and the type 1 NADH dehydrogenase (NDH-1) (ndho) systems protect PSI from excess electron stress and whether they help plants to cope with the consequences of PSI photoinhibition. First, our data reveals that neither PGR5 nor NDH-1 system protects PSI from a sudden burst of electrons. This strongly suggests that these systems in Arabidopsis thaliana do not function as direct acceptors of electrons delivered from PSII to PSI - contrasting with the flavodiiron proteins that were found to make Physcomitrella patens PSI resistant to the PIT. Second, it is demonstrated that under light-limiting conditions, the electron transfer rate at PSII is linearly dependent on the amount of functional PSI in all genotypes, while under excess light, the PGR5-dependent control of electron flow at the Cytochrome b(6)f complex overrides the effect of PSI inhibition. Finally, the PIT is shown to increase the amount of PGR5 and NDH-1 as well as of PTOX, suggesting that they mitigate further damage to PSI after photoinhibition rather than protect against it

    Chlorella saccharophila cytochrome f and its involvement in the heat shock response

    Get PDF
    Cytochrome f is an essential component of the major redox complex of the thylakoid membrane. Cloning and characterization are presented here of a novel partial cDNA (ChspetA) encoding cytochrome f in the psychrophile unicellular green alga Chlorella saccharophila and its involvement in the heat shock (HS) response pathway has been analysed. Semi-quantitative reverse transcriptase PCR analysis showed that ChspetA expression is up-regulated in heat-shocked cells and the protein profile of cytochrome f highlighted a release of cytochrome f into the cytosol depending on the time lapse from the HS. Evans Blue assay, analysis of chromatin condensation, and chloroplast alterations showed the induction of cell death in cell suspensions treated with cytosolic extracts from heat-shocked cells. This study identifies cytochrome f in C. saccharophila that seems to be involved in the HS-induced programmed cell death process. The data suggest that cytochrome f fulfils its role through a modulation of its transcription and translation levels, together with its intracellular localization. This work focuses on a possible role of cytochrome f into the programmed cell death-like process in a unicellular chlorophyte and suggests the existence of chloroplast-mediated programmed cell death machinery in an organism belonging to one of the primary lineages of photosynthetic eukaryotes

    Hepatitis C virus quasispecies in chronically infected children subjected to interferon–ribavirin therapy

    Get PDF
    Accumulating evidence suggests that certain features of hepatitis C virus (HCV), especially its high genetic variability, might be responsible for the low efficiency of anti-HCV treatment. Here, we present a bioinformatic analysis of HCV-1a populations isolated from 23 children with chronic hepatitis C (CHC) subjected to interferon–ribavirin therapy. The structures of the viral quasispecies were established based on a 132-amino-acid sequence derived from E1/E2 protein, including hypervariable region 1 (HVR1). Two types of HCV populations were identified. The first type, found in non-responders, contained a small number of closely related variants. The second type, characteristic for sustained responders, was composed of a large number of distantly associated equal-rank variants. Comparison of 445 HVR1 sequences showed that a significant number of variants present in non-responding patients are closely related, suggesting that certain, still unidentified properties of the pathogen may be key factors determining the result of CHC treatment

    Expectations and Uncertainty: A Common-Source Infection Model for Selected European Countries

    Get PDF
    We present a common-source infection model for explaining the formation of expectations by households. Starting from the framework of "Macroeconomic expectations of household and professional forecasters" (C.D. Carroll, The Quarterly Journal of Economics, 2003), we augment the original model assuming that also uninformed individuals are able to update expectations according to a naive econometric process. In this novel framework, a key role is played by the parameter measuring the prob- ability of being informed: the dynamics of this factor over time capture the level of uncertainty perceived by households. This new framework is applied to study unemployment expectations for a selected group of European countries (France, Germany, Italy and the UK). Our results show that: (i) the novel framework is supported by data on unemployment expectations; and (ii) the probability of being informed is (negatively) correlated with the level of uncertainty spread by newspapers and conveyed by Internet

    Toward Enhanced Fixation of CO2 in Aquatic Biomass: Focus on Microalgae

    Get PDF
    The need to reduce the CO2 footprint of human activities calls for the utilization of new means of production and new sources of products. Microalgae are a very promising source of a large variety of products, from fuels to chemicals for multiple industrial applications (e.g., dyes, pharmaceutical products, cosmetics, food and feed, new materials for high tech manufacture), and for processes such as wastewater treatment. Algae, as photosynthetic organisms, use light to energize the synthesis of organic matter and differently from most terrestrial plants, can be cultured on land that is not used for crop production. We describe the main factors contributing to microalgae productivity in artificial cultivation systems and discuss the research areas that still need investigation in order to pave the way to the generation of photosynthetic cell factories. We shall comment on the main caveats of the possible mode of improving photosynthetic efficiency and to optimize the partitioning of fixed C to products of commercial relevance. We address the problem of the selection of the appropriate strain and of the consequences of their diverse physiology and culture conditions for a successful commercial application. Finally, we shall provide state of the art information on cell factories chassis by means of synthetic biology approaches to produce chemicals of interest

    Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature

    No full text
    Photosynthetic organisms respond to strong illumination by activating several photoprotection mechanisms. One of them, non-photochemical quenching (NPQ), consists in the thermal dissipation of energy absorbed in excess. In vascular plants NPQ relies on the activity of PSBS, whereas in the green algae Chlamydomonas reinhardtii it requires a different protein, LHCSR. The moss Physcomitrella patens is the only known organism in which both proteins are present and active in triggering NPQ, making this organism particularly interesting for the characterization of this protection mechanism. We analysed the acclimation of Physcomitrella to high light and low temperature, finding that these conditions induce an increase in NPQ correlated to overexpression of both PSBS and LHCSR. Mutants depleted of PSBS and/or LHCSR showed that modulation of their accumulation indeed determines NPQ amplitude. All mutants with impaired NPQ also showed enhanced photosensitivity when exposed to high light or low temperature, indicating that in this moss the fast-responding NPQ mechanism is also involved in long-term acclimatio

    A red-shifted antenna protein associated with photosystem II in Physcomitrella patens

    No full text
    Antenna systems of plants and green algae are made up of pigment-protein complexes belonging to the light-harvesting complex (LHC) multigene family. LHCs increase the light-harvesting cross-section of photosystems I and II and catalyze photoprotective reactions that prevent light-induced damage in an oxygenic environment. The genome of the moss Physcomitrella patens contains two genes encoding LHCb9, a new antenna protein that bears an overall sequence similarity to photosystem II antenna proteins but carries a specific motif typical of photosystem I antenna proteins. This consists of the presence of an asparagine residue as a ligand for Chl 603 (A5) chromophore rather than a histidine, the common ligand in all other LHCbs. Asparagine as a Chl 603 (A5) ligand generates red-shifted spectral forms associated with photosystem I rather than with photosystem II, suggesting that in P. patens, the energy landscape of photosystem II might be different with respect to that of most green algae and plants. In this work, we show that the in vitro refolded LHCb9-pigment complexes carry a red-shifted fluorescence emission peak, different from all other known photosystem II antenna proteins. By using a specific antibody, we localized LHCb9 within PSII supercomplexes in the thylakoid membranes. This is the first report of red-shifted spectral forms in a PSII antenna system, suggesting that this biophysical feature might have a special role either in optimization of light use efficiency or in photoprotection in the specific environmental conditions experienced by this moss
    corecore