51 research outputs found

    The Low-pH Stability Discovered in Neuraminidase of 1918 Pandemic Influenza A Virus Enhances Virus Replication

    Get PDF
    The “Spanish” pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included “Spanish Flu”-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency

    Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Get PDF
    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs

    Wnt Signalling Pathway Parameters for Mammalian Cells

    Get PDF
    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model

    Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    Get PDF
    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission

    Polyvalent DNA Vaccines Expressing HA Antigens of H5N1 Influenza Viruses with an Optimized Leader Sequence Elicit Cross-Protective Antibody Responses

    Get PDF
    Highly pathogenic avian influenza A (HPAI) H5N1 viruses are circulating among poultry populations in parts of Asia, Africa, and the Middle East, and have caused human infections with a high mortality rate. H5 subtype hemagglutinin (HA) has evolved into phylogenetically distinct clades and subclades based on viruses isolated from various avian species. Since 1997, humans have been infected by HPAI H5N1 viruses from several clades. It is, therefore, important to develop strategies to produce protective antibody responses against H5N1 viruses from multiple clades or antigenic groups. In the current study, we optimized the signal peptide design of DNA vaccines expressing HA antigens from H5N1 viruses. Cross reactivity analysis using sera from immunized rabbits showed that antibody responses elicited by a polyvalent formulation, including HA antigens from different clades, was able to elicit broad protective antibody responses against multiple key representative H5N1 viruses across different clades. Data presented in this report support the development of a polyvalent DNA vaccine strategy against the threat of a potential H5N1 influenza pandemic

    A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity

    Get PDF
    The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-015-9474-8) contains supplementary material, which is available to authorized users
    corecore