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Abstract Hypertension is a risk factor for renal impair-

ment. While treatment of hypertension provides significant

renal protection, there is still an unmet need requiring

further exploration of additional pathogenetic mechanisms.

We have found that the hypertension-related, calcium-

regulated gene (HCaRG/COMMD5) is involved in renal

repair. HCaRG is a small intracellular protein of 225 amino

acids and its gene expression is negatively regulated by

extracellular calcium concentrations. HCaRG is mostly

expressed in the kidneys, with higher levels found in the

spontaneously hypertensive rat than in normotensive rats.

In an acute kidney injury model, HCaRG expression

decreases immediately after injury but increases above

baseline during the repair phase. In cell cultures, HCaRG

has been shown to facilitate differentiation and to inhibit

cell proliferation via p21 transactivation through the p53-

independent signaling pathway. Induction of p21 inde-

pendently of p53 is also observed in transgenic mice

overexpressing HCaRG during the repair phase after

ischemia/reperfusion injury, resulting in their improved

renal function and survival with rapid re-differentiation of

proximal tubular epithelial cells. In addition, transgenic

mice recover rapidly from the inflammatory burst most

likely as a result of maintenance of the tubular epithelial

barrier. Recent studies indicate that facilitating re-differ-

entiation and cell cycle regulation in injured renal proximal

tubules might be important functions of HCaRG. We have

proposed that HCaRG is a component of differential

genetic susceptibility to renal impairment in response to

hypertension.
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Introduction

High blood pressure is a risk factor for renal failure. It is

well known that malignant hypertension leads to kidney

injury and that mild to moderate chronic hypertension

can accelerate the progression of renal disease. Para-

doxically, the most used animal model of human hyper-

tension, the spontaneously hypertensive rat (SHR), is

relatively resistant to renal damage not only when com-

pared to other hypertensive rat models, such as the Dahl

salt-sensitive rat or the Munich hypertensive strain, but

also in comparison to normotensive rats such as the

Brown–Norway (BN) rat, suggesting that genetic factors

may affect the susceptibility to hypertension-induced or

-accelerated renal disease. This has been well demon-

strated by elegant studies of Theodore W. Kurtz’s group

when they transplanted a kidney of the BN rat to the

uninephrectomized SHR: it resulted in more severe kid-

ney damage to the BN donor kidney than to the SHR

kidney [1]. Our review focuses here on a hypertension-

related gene, hypertension-related, calcium-regulated gene

(HCaRG/COMMD5) that is more expressed in kidneys of

SHR than of normotensive rats, and could explain in part

the resistance of the SHR kidney by its accelerating

effects on renal repair.
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Discovery of HCaRG

HCaRG was initially discovered by our group in the

parathyroid glands of the SHR and shown to be negatively

regulated by extracellular calcium concentrations. It

encodes a small intracellular protein of 225 amino-acids

[2]. Incubation of parathyroid cells under the low extra-

cellular calcium condition increases HCaRG expression in

the same manner as parathyroid hormone. Other hormones,

such as natriuretic peptides and vasopressin, have also been

shown to respond to low extracellular calcium concentra-

tions, but HCaRG is the first intracellular protein reported

to have this property, and all these genes, including

HCaRG, possess a negative calcium-responsive element in

their promoters [3].

Hypertension is one of the risk factors not only for

kidney injuries but also for renal cell carcinoma (RCC) [4–

7]. Genetic hypertension is characterized at birth by sup-

pression of apoptosis and increment of cell proliferation,

leading to neonatal heart and kidney hyperplasia [8].

During the period of hypertension development, apoptosis

is increased in response to the increment of blood pressure

but so is proliferation, resulting in acceleration of cell

turnover. The HCaRG gene exists in one copy on human

chromosome 8q24.3 with paralogs on syntenic regions of

rat chromosome 7 and mouse chromosome 15. This locus

is associated with kidney weight (KW), urinary calcium

excretion in rats and oncogenesis in humans [9, 10].

Chromosome 8 abnormalities, which might be of particular

pathogenic importance, can be detected in 15 % of patients

with acute myeloid leukemia [11, 12]. Gains and high-level

gene amplification at 8q have been reported in renal cell

carcinoma (RCC), metastatic prostate cancers, sporadic

colorectal carcinomas and metastatic gastrointestinal stro-

mal tumors [13–18]. Chromosome 8 anomalies in certain

cancers could disrupt the HCaRG gene. In fact, HCaRG

levels are decreased in various cancer cell lines [2].

HCaRG levels are more abundant in the kidneys, heart and

adrenal glands. HCaRG is mainly located in renal proximal

tubules (RPTs) of kidneys. We became interested in the

possible roles played by HCaRG in the process of kidney

development and renal repair after injury.

HCaRG as a member of the COMMD protein family

HCaRG has been assigned to a novel copper metabolism

MURR1 domain-containing (COMMD) protein family,

based on the identification of a well-conserved and unique

domain at its carboxy-terminal end the COMM domain.

The COMMD protein family has 10 members, and HCaRG

corresponds to COMMD5. The length of the COMM

domain varies between 70 to 85 amino acids across

members of the family. The prototype of the COMMD

protein family, COMMD1, exerts the function of blocking

nuclear factor of kappa light polypeptide gene enhancer in

B-cells (NF-jB)-chromatin interaction which, in turn, is

induced by various stimuli, including tumor necrosis factor

(TNF) and interleukin (IL)-1b [19, 20]. It has been deter-

mined that all members of the COMMD family are capable

of inhibiting NF-jB transcriptional activity to various

degrees and that the COMM domain is critical in the

process. Recently, we reported that transgenic (Tg) mice

overexpressing HCaRG/COMMD5 in RPTs recovered

rapidly from the inflammatory burst that increased TNF-a
and IL-1b as well as infiltration of macrophages after acute

kidney injury (AKI) [21].

The COMM domain, which defines all COMMD pro-

teins and is well conserved among members of this protein

family, provides a critical interface for protein–protein

interactions. It has been established that COMMD proteins

are highly interactive and that the COMM domain mediates

COMMD1-COMMD1 homodimerization as well as bind-

ing to other COMMD proteins [22]. While the COMM

domains of COMMD1 and HCaRG are highly conserved,

87 % of amino acids differ between HCaRG and COM-

MD1 outside this domain, suggesting that members of the

COMMD protein family could have different functions

(Fig. 1).

HCaRG as cell cycle regulator

Renal proximal tubules repair after injury requires de-dif-

ferentiation, proliferation and migration of surviving

tubular cells to replace dead cells [23, 24]. The process of

tubular repair is similar to renal development in the fetal

stage and includes a high cell proliferation rate, soaring

apoptosis and a specific gene expression pattern. Interest-

ingly, Joseph V. Bonventre’s group has demonstrated that

epithelial cell cycle arrest at G2/M during the injury phase

results in the activation of c-jun NH2-terminal kinase sig-

naling, which acts to up-regulate the production of fibro-

genic cytokines, thus accelerating progression of chronic

kidney disease (CKD) [25]. In contrast, inhibition of cell

proliferation with cycle arrest at G1 mediated by rosiglit-

azone, which has been used to decrease insulin resistance

by activating peroxisomal proliferator-activated receptor,

facilitates the recovery of proximal tubular epithelial cells

(PTECs) after cisplatin-induced injury through the down-

regulation of extracellular signal-regulated kinase and Akt

signaling [26].

The effect of HCaRG on cell proliferation was demon-

strated in two kidney cell lines, human embryonic kidney

(HEK)-293 cells and Madin–Darby canine kidney

(MDCK)-C7 cells [27]. The cells were stably transfected
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with either control plasmid (Neo) or HCaRG expression

plasmid (HCaRG). HCaRG-overexpressing cells presented

a much lower proliferation rate (Fig. 2a) and DNA syn-

thesis than control cells. In addition, HCaRG delayed the

cell cycle with accumulation of cells at G2/M, without

arrest [28].

The gene expression profiles of 111 cell cycle regulatory

genes in stably-transfected cells have been analyzed [28].

HCaRG overexpression markedly induced p21 and down-

regulated p27 in HEK-293 cells. HCaRG overexpression

also augmented p21 expression independently of p53

expression in MDCK-C7 cells (Fig. 2b) [21]. This up-

regulation was diminished by HCaRG knockdown with

short-hairpin RNA (shRNA). p21, accompanied by p53 up-

regulation, has been demonstrated to be induced in cells

undergoing either p53-dependent G1 growth arrest or

apoptosis [29]. p21 levels can also rise rapidly by differ-

entiation inducers through a p53-independent pathway. In

that case, p21 induction is coupled with the expression of

early differentiation markers [30]. p21, independently of

p53, could act as an inducible growth inhibitor that con-

tributes to slow down the cell cycle and facilitates differ-

entiation [31].

HCaRG fosters cellular maturation

HCaRG has been associated with changes in cell mor-

phology and the appearance of differentiated phenotypes,

namely, HCaRG-overexpressing HEK-293 cells present

features of mature epithelial cells, such as higher protein

content, cell size and volume [28]. Transmission electron

microscopy ultrastructural analysis has revealed the pre-

sence of more differentiated junctions (desmosome-like) in

HCaRG-overexpressing cells than in Neo controls, and

these cells demonstrate features consistent with junctional

(glandular-like) complex formation and numerous micro-

villi (Fig. 2c). These cellular changes are concordant with

several modifications in the levels of specific epithelial/

mesenchymal markers. E-cadherin, a marker of epithelial

integrity [32], is higher in HCaRG-overexpressing cells

than in control cells (Fig. 2b) [21]. In contrast, vimentin, an

intermediate filament protein that is only expressed in

mesenchymal cells [33], is lower in HCaRG-overexpress-

ing cells. These observations indicate that HCaRG could

accelerate differentiation and maturation via p21 transac-

tivation through a p53-independent pathway in kidney

cells, resulting in delay of the cell cycle with G2/M

accumulation.

HCaRG stimulates renal cell migration

Acute kidney injury evokes actin cytoskeleton disruption

and aggregation by induction of cofilin and, consequently,

causes the breakdown of PTEC apical membrane microvilli

during the early stage after ischemia [34]. Aquaporin-1,

which is widely expressed in epithelial and endothelial cell

membranes and facilitates transepithelial water transport,

accelerates the migration of PTECs by actin re-organiza-

tion, resulting in decreased tubular injury after ischemia

[35]. Such cytoskeletal organization and migration of

PTECs are key events occurring during tubular injury and

repair.

As described previously, HCaRG accelerates differen-

tiation and maturation via p21 transactivation. On the other

hand, HCaRG overexpression increases the motility of

kidney cells through the secretion of transforming growth

factor-a in the wound-healing assay (Fig. 3a) [36]. We

recently examined the intracellular location of HCaRG and

actin in migrating MDCK-C7 cells during wound healing

(Fig. 3b). In non-migrating cells, we observed HCaRG

localization in the perinuclear space and clearly visible

actin fibers with no signs of interactions between the two

proteins. In migrating cells, intracellular actin fibers dis-

appeared, and short filamentous (F)-actin accumulation

was seen between the nucleus and elongated tip. HCaRG

was also seen concentrated with short F-actin between the

Fig. 1 Alignment of human HCaRG/COMMD5 and COMMD1

proteins, excluding the COMM domain. While COMM domains of

the COMMD protein family are highly conserved, HCaRG has only

13 % homology with COMMD1. Asterisks indicate positions with a

single, fully-conserved residue. Colons depict strongly similar

properties—scoring [0.5 in the Gonnet PAM 250 matrix. Periods

indicate weak similarity—scoring B0.5 in the Gonnet PAM 250

matrix. HCaRG hypertension-related calcium-regulated gene, COMM

copper metabolism MURR1
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nucleus and elongated tip. It is known that in migrating

fibroblasts, centrosomes reorient between the nucleus and

elongated tip, which in turn re-positions the Golgi appa-

ratus that is thought to establish and maintain cell polarity

during migration [37–40]. We postulate that HCaRG could

play a role in stimulating cell migration and wound healing

without de-differentiation, by directly involving actin re-

organization.

HCaRG accelerates renal tubular repair after injury

Acute kidney injury

Ischemia/reperfusion injury (IRI) causes acute tubular

damage, one of the most common forms of human AKI.

After renal ischemia with renal hypoperfusion and hypoxia,

PTECs lose their structural integrity through a sequence of

events that include the disruption of brush border with

blebbing of the apical membrane, fragmentation and

internalization, and a rapid change in cell polarity. During

the recovery phase, surviving PTECs proliferate and

replace the irreversibly injured PTECs, migrate to cover

the exposed areas of the basement membrane and re-dif-

ferentiate to restore tubular integrity [23]. In a rat IRI

model, we determined that HCaRG mRNA levels

decreased soon after reperfusion and reached their lowest

levels after 3–6 h, when PTECs were de-differentiated and

proliferated. HCaRG mRNA levels then rose steadily to

higher than baseline 48 h after reperfusion, corresponding

to the regeneration phase [2].

Tg mice overexpressing HCaRG in RPTs were gener-

ated to test the hypothesis that HCaRG could stimulate

renal repair [21]. Exogenous HCaRG was inserted into the

kidney androgen-regulated protein (KAP) promoter plas-

mid. KAP was identified as an abundant protein under

androgen control and expressed in RPTs [41, 42];

b Fig. 2 HCaRG controls cell proliferation and facilitates cellular

differentiation. a Cell proliferation in Neo- or HCaRG-plasmid-

transfected HEK-293 and MDCK-C7 cells. HCaRG inhibited cell

proliferation in both kidney cell lines *p \ 0.05, �p \ 0.01. b Protein

expression of HCaRG, p53, p21 and differentiation phenotype

markers (E-cadherin and vimentin) in Neo- and HCaRG-plasmid-

transfected MDCK-C7 cells with or without shRNA. HCaRG was

detected only in HCaRG-MDCK cells. HCaRG-MDCK cells showed

more mature gene expression patterns than Neo-MDCK cells. HCaRG

induced p21 transactivation without p53 induction. shRNA-HCaRG

treatment lowered HCaRG levels compared to a non-target control.

HCaRG reduction led to lower p21 expression and abolition of

differentiation in HCaRG-MDCK cells. Data from Matsuda et al.

[21]. c Electron microscopy of Neo- and HCaRG-plasmid-transfected

HEK-293 cells. HCaRG-HEK-293 cells had mature desmosome-like

junctions instead of the tight junctions of Neo-control cells. Scale

bars 300 nm. Figure from Devlin et al. [28]
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Fig. 3 HCaRG stimulates renal

cell migration. a Wound healing

assay in Neo- or HCaRG-

plasmid-transfected HEK-293

cells. HCaRG markedly

accelerated wound healing after

20 h compared to Neo-controls.

Scale bars 50 lm.

b Intracellular location of

F-actin (green) and HCaRG

(red) in migrating MDCK cells

during the wound-healing

process. In non-migrating cells,

HCaRG is located in the

perinuclear space, and

organized actin fibers are clearly

visible. In the migrating cell,

intracellular actin fibers are de-

polymerized and short F-actin

filaments are observed in the

perinuclear space. HCaRG

localizes with short F-actin

filaments between the nucleus

and elongated tip. Nuclei are

stained by DAPI (blue). Scale

bars 25 lm (color figure online)
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therefore, exogenous HCaRG was expressed in RPTs of Tg

male mice under androgen control.

In an AKI model, IRI caused severe tubular damage that

resulted in pronounced renal dysfunction in both non-Tg

and Tg mice [21]. The survival rate 7 days after IRI injury

was 64 % in Tg compared to only 25 % in non-Tg mice

(p = 0.0249). In addition, morphological tubular damage

and renal function in Tg mice improved significantly faster

in comparison to non-Tg mice after 2 days (Table 1). We

concluded that HCaRG overexpression significantly

enhances renal function and survival after ischemia.

Tubular epithelial cells and cells within the interstitial

space, which are associated with vascular network com-

ponents and resident fibroblasts, account for about 80 % of

kidney volume, and increased KW could be due to edema,

hypertrophy and cell proliferation after tubular injury [43].

HCaRG overexpression did not affect renal hypertrophy by

uninephrectomy, but significantly reduced the increase of

KW 2 days after reperfusion (Fig. 4a). Such KW reduction

could have resulted from stimulation of cell death or

inhibition of cell growth. However, we demonstrated that

HCaRG had no effect on apoptotic cell death after IRI. A

large number of proliferating cell nuclear antigen (PCNA)-

positive cells were present in tubules on day 2 (Fig. 4b).

HCaRG overexpression decreased only the number of

proliferating tubular cells, while the number of proliferat-

ing cells in the interstitium was comparable between non-

Tg and Tg mice. This inhibition of PTEC proliferation was

accompanied by p53-independent p21 transactivation. It is

known that p21 transactivation by a p53-independent

pathway occurs in RPTs but not in the glomerulus or

interstitium during the renal recovery phase, and might thus

have contributed to cell differentiation [44–46]. In p21

knockout mice, AKI causes more rapid onset of renal

dysfunction, and induces more severe morphological

damage with a threefold higher mortality rate than in

normal mice [45, 47]. Miyaji et al. [46] reported that cis-

platin-induced AKI evoked 2 peaks of increased p21. The

first peak was accompanied by up-regulation of p53 and

PCNA, possibly reflecting G1 arrest and DNA repair. The

second p21 peak occurred through a p53-independent

pathway likely contributing to cell differentiation. These

studies indicate that p53-independent p21 up-regulation

could be crucial in controlling epithelial proliferation and

morphogenesis in RPTs. Actually, in HCaRG Tg mice,

E-cadherin levels recovered more rapidly, while vimentin

induction after IRI disappeared faster than in non-Tg mice.

Chronic kidney disease

Tubulointerstitial fibrosis is recognized to be a common

endpoint of human CKD caused by hypertension, diabetes,

and nephrotic syndrome. Unilateral ureteral obstruction

(UUO) is used as an animal model of progressive tubulo-

interstitial fibrosis. UUO also leads to many pathophysio-

logical events of obstructive nephropathy, such as cellular

infiltration and proliferation, tubular de-differentiation,

apoptosis and atrophy, fibroblasts differentiation and

excessive extracellular matrix deposition [43, 48].

KW is increased 3 days after obstruction because UUO

produces tubular dilatation and interstitial edema (Fig. 4a)

[21]. HCaRG overexpression does not reduce the initial

edema in Tg mice. Contralateral KW gain until 7 days after

obstruction is mainly due to hypertrophy, and HCaRG

overexpression does not affect this hypertrophy, as in the

uninephrectomized kidneys. Ten days after surgery, UUO

results in gradual KW reduction, and HCaRG overexpres-

sion causes more rapid KW diminution in Tg mice com-

pared to non-Tg mice. This KW reduction also derives

from the imbalance of cell growth and loss. In the

obstructed kidneys after 10 days of UUO, HCaRG over-

expression decreases only the number of proliferating

tubular cells, as after IRI (Fig. 4b).

The results in both IRI and UUO models can be

summarized as follows: (1) HCaRG overexpression does

not reduce initial edema, hypertrophy and injury; (2)

HCaRG overexpression leads to faster KW diminution in

Tg than in non-Tg mice; (3) these KW decreases are due

to inhibition of cell proliferation increment in tubules but

not in the interstitium; (4) HCaRG elicits re-differentia-

tion via p21 induction after injury. In conclusion, HCaRG

does not reduce initial tubular injury, but accelerates

repair of RPTs which improves survival by facilitating re-

differentiation of resident PTECs and controlling prolif-

eration via p21 induction through its p53-independent

pathway.

Finally, slow-cycling renal progenitor-like cells provide

regenerating cells that replace injured cells during the

repair phase after AKI [49, 50]. At an early phase of

tubular regeneration, their daughter cells after multiple cell

division show mesenchymal phenotypes such as active

proliferation and migration in the interstitium, and even-

tually differentiate into PTECs. HCaRG could play a role

in the differentiation and survival of resident renal pro-

genitor-like cells.

Table 1 Renal function 2 days after ischemia/reperfusion injury

(IRI)

Genotype Blood urea

nitrogen (mmol/l)

Creatinine (lmol/l)

Non-Tg mice 105.0 ± 25.7 (n = 10) 206.1 ± 99.1 (n = 10)

Tg mice 77.4 ± 33.5 (n = 10)* 114.4 ± 63.6 (n = 10)*

Data are shown as mean ± SD. *p \ 0.05
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Fig. 4 HCaRG-Tg mice exhibit

lower tubular cell proliferation

after ischemia/reperfusion

injury (IRI). a Changes in the

kidney weight (KW)/body

weight (BW) ratio after IRI and

unilateral ureteral obstruction

(UUO). IRI increased KW

compared to nephrectomized

controls, and this increment was

significantly reduced

(*p \ 0.05) in Tg mice after

2 days. In the UUO model, KW

increased with hydronephrosis

caused by ureteral obstruction

for up to 3 days. After day 7,

KW started to decline, and

HCaRG elicited a significantly

more rapid reduction of KW

(�p \ 0.05). b Localization of

proliferating cell nuclear

antigen (PCNA)-positive cells

on day 2 after IRI and on day 10

after UUO. The number of

PCNA-positive cells was

counted in tubular and

interstitial regions, respectively.

PCNA-positive cells in tubules

were lower in Tg than in non-Tg

mice. The black arrow indicates

PCNA-positive tubular cells,

and the white arrow depicts

PCNA-positive interstitial cells.

*p \ 0.05. Scale bars 50 lm.

Data from Matsuda et al. [21]
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Conclusion

Acute kidney injury occurs in various clinical settings,

including renal ischemia arising from septic shock and

major cardiovascular surgery, or acute drug or toxic expo-

sure. It is a common clinical problem with increasing

incidence and mortality, poor prognosis, and unsatisfactory

therapeutic options [51–54]. Despite better knowledge

acquired during the last decade of the pathophysiological

pathways underlying kidney diseases at both the basic

research and clinical levels, the progression of renal dys-

function and the number of hemodialyzed patients is still

increasing steadily every year. Repair after AKI involves

the proliferation of PTECs as well as migration and re-

differentiation. HCaRG has shown beneficial effects in

facilitating re-differentiation and controlling proliferation

through p21 induction via the p53-independent signaling

pathway during the renal repair phase (Fig. 5). HCaRG also

might stimulate the migration of PTECs during the repair

phase directly involving actin re-organization. Moreover,

IRI rapidly activates inflammatory responses, resulting in

endothelial dysfunction in the cortex [55]. HCaRG rap-

idly reduces inflammatory mediators and infiltration of

macrophages after reperfusion [21]. Sepsis-induced AKI

has a distinct pathophysiology which involves intrarenal

hemodynamic changes, vascular endothelial dysfunction,

infiltration of inflammatory cells in the renal parenchyma,

obstruction of tubules with apoptotic and necrotic cells, and

tubular epithelial mitochondrial dysfunction [56, 57].

HCaRG may have the potential to diminish these inflam-

matory responses and to prevent mitochondrial dysfunction

through maintenance of the tubular epithelial barrier not

only after IRI but also in sepsis-induced AKI. In addition,

lack of HCaRG might lead to uncontrolled cell proliferation

and migration, thus increasing the risk of oncogenesis of

RCC. In fact, HCaRG levels are significantly decreased in

tumors of brain, kidney and liver compared to normal

adjacent tissues [2] and rosiglitazone suppressed the growth

of gastric cancer by up-regulating HCaRG [58]. Tubular

regenerating functions mediated by HCaRG are most

important for improved renal function and survival after

AKI. Accelerated healing by HCaRG could serve as a new

therapeutic approach to AKI.
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