43 research outputs found

    EBioMedicine

    Get PDF
    Background High HIV-1 DNA levels in peripheral blood mononuclear cells (PBMC) were associated with a higher risk of severe morbidity and a faster decline in CD4 count in ART-naive patients. We report the association between HIV-1 DNA and mortality in HIV-infected adults in a trial of early ART in West Africa. Methods In the Temprano trial, HIV-infected adults were randomly assigned to start ART immediately or defer ART. After trial termination, HIV-1 DNA was measured in whole blood samples frozen at baseline. We analyzed the association between baseline PBMC HIV-1 DNA and long-term mortality

    Probing molecular geometry of solids by nuclear magnetic resonance spin exchange at the n=0 rotational resonance condition

    No full text
    Exploration of the molecular geometry in rotating powder solids on the basis of magnetization exchange between spins with identical isotropic chemical shifts but differing chemical shielding tensor orientations is demonstrated experimentally. For this we take advantage of the potential of the ODESSA (one-dimensional exchange spectroscopy by sidebands alternation) experiment for the accurate measurement of spin exchange rate constants. We also report the observation of oscillatory behavior of the rotor-driven magnetization exchange at this so-called n = 0 rotational-resonance condition which, in contrast to n = 1,2,3, rotational-resonance conditions, takes place at nearly arbitrary magic-angle spinning frequencies. The sensitivity of the longitudinal exchange decays to the relevant physical parameters of the spin system under conditions of rotor-driven and proton-driven magnetization exchange is discussed theoretically and demonstrated experimentally. Several 13C and 31P spin-exchange measurements have been performed on a series of model compounds covering a broad range of internuclear distances between carboxyl carbon atoms, and on a series of phosphorylated amino acids with different internuclear distances between phosphorus sites. The capacity of the ODESSA experiment for an unambiguous recognition of distinct internuclear distances is demonstrated. Potential applications of such measurements involve the exploration of intermolecular distances and the determination of the mutual orientation of neighboring molecular fragments in polycrystalline and noncrystalline solids. ©2002 American Institute of Physics

    3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints.

    No full text
    International audienceIn a wide variety of proteins, insolubility presents a challenge to structural biology, as X-ray crystallography and liquid-state NMR are unsuitable. Indeed, no general approach is available as of today for studying the three-dimensional structures of membrane proteins and protein fibrils. We here demonstrate, at the example of the microcrystalline model protein Crh, how high-resolution 3D structures can be derived from magic-angle spinning solid-state NMR distance restraints for fully labeled protein samples. First, we show that proton-mediated rare-spin correlation spectra, as well as carbon-13 spin diffusion experiments, provide enough short, medium, and long-range structural restraints to obtain high-resolution structures of this 2 x 10.4 kDa dimeric protein. Nevertheless, the large number of 13C/15N spins present in this protein, combined with solid-state NMR line widths of about 0.5-1 ppm, induces substantial ambiguities in resonance assignments, preventing 3D structure determination by using distance restraints uniquely assigned on the basis of their chemical shifts. In the second part, we thus demonstrate that an automated iterative assignment algorithm implemented in a dedicated solid-state NMR version of the program ARIA permits to resolve the majority of ambiguities and to calculate a de novo 3D structure from highly ambiguous solid-state NMR data, using a unique fully labeled protein sample. We present, using distance restraints obtained through the iterative assignment process, as well as dihedral angle restraints predicted from chemical shifts, the 3D structure of the fully labeled Crh dimer refined at a root-mean-square deviation of 1.33 A.In a wide variety of proteins, insolubility presents a challenge to structural biology, as X-ray crystallography and liquid-state NMR are unsuitable. Indeed, no general approach is available as of today for studying the three-dimensional structures of membrane proteins and protein fibrils. We here demonstrate, at the example of the microcrystalline model protein Crh, how high-resolution 3D structures can be derived from magic-angle spinning solid-state NMR distance restraints for fully labeled protein samples. First, we show that proton-mediated rare-spin correlation spectra, as well as carbon-13 spin diffusion experiments, provide enough short, medium, and long-range structural restraints to obtain high-resolution structures of this 2 x 10.4 kDa dimeric protein. Nevertheless, the large number of 13C/15N spins present in this protein, combined with solid-state NMR line widths of about 0.5-1 ppm, induces substantial ambiguities in resonance assignments, preventing 3D structure determination by using distance restraints uniquely assigned on the basis of their chemical shifts. In the second part, we thus demonstrate that an automated iterative assignment algorithm implemented in a dedicated solid-state NMR version of the program ARIA permits to resolve the majority of ambiguities and to calculate a de novo 3D structure from highly ambiguous solid-state NMR data, using a unique fully labeled protein sample. We present, using distance restraints obtained through the iterative assignment process, as well as dihedral angle restraints predicted from chemical shifts, the 3D structure of the fully labeled Crh dimer refined at a root-mean-square deviation of 1.33 A

    Phonon-based partition of (ZnSe-like) semiconductor mixed crystals on approach to their pressure-induced structural transition

    No full text
    International audienceThe generic 1-bond → 2-mode "percolation-type" Raman signal inherent to the short bond of common A 1−x B x C semiconductor mixed crystals with zincblende (cubic) structure is exploited as a sensitive "mesoscope" to explore how various ZnSe-based systems engage their pressure-induced structural transition (to rock-salt) at the sub-macroscopic scale-with a focus on Zn 1−x Cd x Se. The Raman doublet, that distinguishes between the AC-and BC-like environments of the short bond, is reactive to pressure: either it closes (Zn 1−x Be x Se, ZnSe 1−x S x) or it opens (Zn 1−x Cd x Se), depending on the hardening rates of the two environments under pressure. A partition of II-VI and III-V mixed crystals is accordingly outlined. Of special interest is the "closure" case, in which the system resonantly stabilizes ante transition at its "exceptional point" corresponding to a virtual decoupling, by overdamping, of the two oscillators forming the Raman doublet. At this limit, the chain-connected bonds of the short species (taken as the minor one) freeze along the chain into a rigid backbone. This reveals a capacity behind alloying to reduce the thermal conductivity as well as the thermalization rate of photo-generated electrons
    corecore