306 research outputs found

    Distinguishability of hyperentangled Bell state by linear evolution and local projective measurement

    Full text link
    Measuring an entangled state of two particles is crucial to many quantum communication protocols. Yet Bell state distinguishability using a finite apparatus obeying linear evolution and local measurement is theoretically limited. We extend known bounds for Bell-state distinguishability in one and two variables to the general case of entanglement in nn two-state variables. We show that at most 2n+1−12^{n+1}-1 classes out of 4n4^n hyper-Bell states can be distinguished with one copy of the input state. With two copies, complete distinguishability is possible. We present optimal schemes in each case.Comment: 5 pages, 2 figure

    Growth Hormone, Insulin, And Replacement Or Storage Of Nitrogen

    Get PDF

    The potential energy of a 40^{40}K Fermi gas in the BCS-BEC crossover

    Full text link
    We present a measurement of the potential energy of an ultracold trapped gas of 40^{40}K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a non-interacting gas, and in the T=0 limit we extract the universal many-body parameter β\beta. We find β=−0.54−0.12+0.05\beta = -0.54^{+0.05}_{-0.12}; this value is consistent with previous measurements using 6^{6}Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime

    Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    Full text link
    Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with Quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above Tc.Comment: 9 pages, 9 figures. Substantially revised version (to appear in Phys. Rev. Lett.

    Superfluid properties of one-component Fermi gas with an anisotropic p-wave interaction

    Full text link
    We investigate superfluid properties and strong-coupling effects in a one-component Fermi gas with an anisotropic p-wave interaction. Within the framework of the Gaussian fluctuation theory, we determine the superfluid transition temperature TcT_{\rm c}, as well as the temperature T0T_0 at which the phase transition from the pxp_x-wave pairing state to the px+ipyp_x+ip_y-wave state occurs below TcT_{\rm c}. We also show that while the anisotropy of the p-wave interaction enhances TcT_{\rm c} in the strong-coupling regime, it suppresses T0T_0.Comment: 7 pages, 3 figures, proceedings of QFS 201

    Microphysiological systems as models for immunologically ‘cold’ tumors

    Get PDF
    The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically ‘cold’ tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in ‘cold’ tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various ‘cold’ tumors. Understanding the intricacies of the TME in ‘cold’ tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches
    • …
    corecore