2,928 research outputs found
Cavity optomechanics with stoichiometric SiN films
We study high-stress SiN films for reaching the quantum regime with
mesoscopic oscillators connected to a room-temperature thermal bath, for which
there are stringent requirements on the oscillators' quality factors and
frequencies. Our SiN films support mechanical modes with unprecedented products
of mechanical quality factor and frequency reaching Hz. The SiN membranes exhibit a low optical absorption
characterized by Im at 935 nm, representing a 15 times
reduction for SiN membranes. We have developed an apparatus to simultaneously
cool the motion of multiple mechanical modes based on a short, high-finesse
Fabry-Perot cavity and present initial cooling results along with future
possibilities.Comment: 4 pages, 5 figure
Energy and Momentum Distributions of Kantowski and Sachs Space-time
We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou
energy-momentum complexes to calculate the energy and momentum distributions of
Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson
definitions furnish a consistent result for the energy distribution, but the
definition of Landau-Lifshitz do not agree with them. We show that a signature
switch should affect about everything including energy distribution in the case
of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and
Landau-Lifshitz prescriptions.Comment: 12 page
Self-consistent treatment of the self-energy in nuclear matter
The influence of hole-hole propagation in addition to the conventional
particle-particle propagation, on the energy per nucleon and the momentum
distribution is investigated. The results are compared to the
Brueckner-Hartree-Fock (BHF) calculations with a continuous choice and
conventional choice for the single-particle spectrum. The Bethe-Goldstone
equation has been solved using realistic interactions. Also, the structure
of nucleon self-energy in nuclear matter is evaluated. All the self-energies
are calculated self-consistently. Starting from the BHF approximation without
the usual angle-average approximation, the effects of hole-hole contributions
and a self-consistent treatment within the framework of the Green function
approach are investigated. Using the self-consistent self-energy, the hole and
particle self-consistent spectral functions including the particle-particle and
hole-hole ladder contributions in nuclear matter are calculated using realistic
interactions. We found that, the difference in binding energy between both
results, i.e. BHF and self-consistent Green function, is not large. This
explains why is the BHF ignored the 2h1p contribution.Comment: Preprint 20 pages including 15 figures and one tabl
Energy and Momentum densities of cosmological models, with equation of state , in general relativity and teleparallel gravity
We calculated the energy and momentum densities of stiff fluid solutions,
using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes,
in both general relativity and teleparallel gravity. In our analysis we get
different results comparing the aforementioned complexes with each other when
calculated in the same gravitational theory, either this is in general
relativity and teleparallel gravity. However, interestingly enough, each
complex's value is the same either in general relativity or teleparallel
gravity. Our results sustain that (i) general relativity or teleparallel
gravity are equivalent theories (ii) different energy-momentum complexes do not
provide the same energy and momentum densities neither in general relativity
nor in teleparallel gravity. In the context of the theory of teleparallel
gravity, the vector and axial-vector parts of the torsion are obtained. We show
that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in
International Journal of Theoretical Physic
Geodesics and Geodesic Deviation in static Charged Black Holes
The radial motion along null geodesics in static charged black hole
space-times, in particular, the Reissner-Nordstr\"om and stringy charged black
holes are studied. We analyzed the properties of the effective potential. The
circular photon orbits in these space-times are investigated. We found that the
radius of circular photon orbits in both charged black holes are different and
differ from that given in Schwarzschild space-time. We studied the physical
effects of the gravitational field between two test particles in stringy
charged black hole and compared the results with that given in Schwarzschild
and Reissner-Nordstr\"om black holes.Comment: 12 pages, 5 figures, small changes, figures and references added,
conclusions changed. A improved, version accepted in Astrophysics and Space
Scienc
Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium
Self and kin discrimination are observed in most kingdoms of life and are mediated by highly polymorphic plasma membrane proteins. Sequence polymorphism, which is essential for effective recognition, is maintained by balancing selection. Dictyostelium discoideum are social amoebas that propagate as unicellular organisms but aggregate upon starvation and form fruiting bodies with viable spores and dead stalk cells. Aggregative development exposes Dictyostelium to the perils of chimerism, including cheating, which raises questions about how the victims survive in nature and how social cooperation persists. Dictyostelids can minimize the cost of chimerism by preferential cooperation with kin, but the mechanisms of kin discrimination are largely unknown. Dictyostelium lag genes encode transmembrane proteins with multiple immunoglobulin (Ig) repeats that participate in cell adhesion and signaling. Here, we describe their role in kin discrimination. We show that lagB1 and lagC1 are highly polymorphic in natural populations and that their sequence dissimilarity correlates well with wild-strain segregation. Deleting lagB1 and lagC1 results in strain segregation in chimeras with wild-type cells, whereas elimination of the nearly invariant homolog lagD1 has no such consequences. These findings reveal an early evolutionary origin of kin discrimination and provide insight into the mechanism of social recognition and immunity
Novel Approaches towards Highly Selective Self-Powered Gas Sensors
The prevailing design approaches of semiconductor gas sensors struggle to overcome most of their current limitations such as poor selectivity, and high power consumption. Herein, a new sensing concept based on devices that are capable of detecting gases without the need of any external power sources required to activate interaction of gases with sensor or to generate the sensor read out signal. Based on the integration of complementary functionalities (namely; powering and sensing) in a singular nanostructure, self-sustained gas sensors will be demonstrated. Moreover, a rational methodology to design organic surface functionalization that provide high selectivity towards single gas species will also be discussed. Specifically, theoretical results, confirmed experimentally, indicate that precisely tuning of the sterical and electronic structure of sensor material/organic interfaces can lead to unprecedented selectivity values, comparable to those typical of bioselective processes. Finally, an integrated gas sensor that combine both the self-powering and selective detection strategies in one single device will also be presented. © 2015 Published by Elsevier Ltd.Peer ReviewedPostprint (published version
Energy Distribution associated with Static Axisymmetric Solutions
This paper has been addressed to a very old but burning problem of energy in
General Relativity. We evaluate energy and momentum densities for the static
and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen
and the gamma metrics, belonging to the Weyl class. We apply four well-known
prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mller to
compute energy-momentum density components. We obtain that these prescriptions
do not provide similar energy density, however momentum becomes constant in
each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc
Predicting shape and stability of air–water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts
A mathematical framework developed to calculate the shape of the air–water interface and predict the stability of a microfabricated superhydrophobicsurface with randomly distributed posts of dissimilar diameters and heights is presented. Using the Young–Laplace equation, a second-order partial differential equation is derived and solved numerically to obtain the shape of the interface, and to predict the critical hydrostatic pressure at which the superhydrophobicity vanishes in a submersed surface. Two examples are given for demonstration of the method’s capabilities and accuracy
- …