229 research outputs found

    On the physical processes which lie at the bases of time variability of GRBs

    Get PDF
    The relative-space-time-transformation (RSTT) paradigm and the interpretation of the burst-structure (IBS) paradigm are applied to probe the origin of the time variability of GRBs. Again GRB 991216 is used as a prototypical case, thanks to the precise data from the CGRO, RXTE and Chandra satellites. It is found that with the exception of the relatively inconspicuous but scientifically very important signal originating from the initial ``proper gamma ray burst'' (P-GRB), all the other spikes and time variabilities can be explained by the interaction of the accelerated-baryonic-matter pulse with inhomogeneities in the interstellar matter. This can be demonstrated by using the RSTT paradigm as well as the IBS paradigm, to trace a typical spike observed in arrival time back to the corresponding one in the laboratory time. Using these paradigms, the identification of the physical nature of the time variablity of the GRBs can be made most convincingly. It is made explicit the dependence of a) the intensities of the afterglow, b) the spikes amplitude and c) the actual time structure on the Lorentz gamma factor of the accelerated-baryonic-matter pulse. In principle it is possible to read off from the spike structure the detailed density contrast of the interstellar medium in the host galaxy, even at very high redshift.Comment: 11 pages, 5 figure

    The EMBH model in GRB 991216 and GRB 980425

    Full text link
    This is a summary of the two talks presented at the Rome GRB meeting by C.L. Bianco and R. Ruffini. It is shown that by respecting the Relative Space-Time Transformation (RSTT) paradigm and the Interpretation of the Burst Structure (IBS) paradigm, important inferences are possible: a) in the new physics occurring in the energy sources of GRBs, b) on the structure of the bursts and c) on the composition of the interstellar matter surrounding the source.Comment: 8 pages, 3 figures, in the Proceedings of the "Third Rome Workshop on Gamma-Ray Bursts in the Afterglow Era", 17-20 September 2002, M. Feroci, F. Frontera, N. Masetti, L. Piro (editors

    The Space Environment and Atmospheric Joule Heating of the Habitable Zone Exoplanet TOI700-d

    Full text link
    We investigate the space environment conditions near the Earth-size planet TOI~700~d using a set of numerical models for the stellar corona and wind, the planetary magnetosphere, and the planetary ionosphere. We drive our simulations using a scaled-down stellar input and a scaled-up solar input in order to obtain two independent solutions. We find that for the particular parameters used in our study, the stellar wind conditions near the planet are not very extreme -- slightly stronger than that near the Earth in terms of the stellar wind ram pressure and the intensity of the interplanetary magnetic field. Thus, the space environment near TOI700-d may not be extremely harmful to the planetary atmosphere, assuming the planet resembles the Earth. Nevertheless, we stress that the stellar input parameters and the actual planetary parameters are unconstrained, and different parameters may result in a much greater effect on the atmosphere of TOI700-d. Finally, we compare our results to solar wind measurements in the solar system and stress that modest stellar wind conditions may not guarantee atmospheric retention of exoplanets.Comment: accepted to Ap

    GRB 970228 Within the EMBH Model

    Full text link
    We consider the gamma-ray burst of 1997 February 28 (GRB 970228) within the ElectroMagnetic Black Hole (EMBH) model. We first determine the value of the two free parameters that characterize energetically the GRB phenomenon in the EMBH model, that is to say the dyadosphere energy, Edya=5.1×1052E_{dya}=5.1\times10^{52} ergs, and the baryonic remnant mass MBM_{B} in units of EdyaE_{dya}, B=MBc2/Edya=3.0×103B=M_{B}c^{2}/E_{dya}=3.0\times10^{-3}. Having in this way estimated the energy emitted during the beam-target phase, we evaluate the role of the InterStellar Medium (ISM) number density (nISM_{ISM}) and of the ratio R{\cal R} between the effective emitting area and the total surface area of the GRB source, in reproducing the observed profiles of the GRB 970228 prompt emission and X-ray (2-10 keV energy band) afterglow. The importance of the ISM distribution three-dimensional treatment around the central black hole is also stressed in this analysis.Comment: 4 pages, 1 figure, to appear in the Proceedings of the Los Alamos "Gamma Ray Burst Symposium" in Santa Fe, New Mexico, September 8-12 2003 (AIP Conf. Ser.), CHAPTER: GRB Connection to Supernova

    On the structures in the afterglow peak emission of gamma ray bursts

    Get PDF
    Using GRB 991216 as a prototype, it is shown that the intensity substructures observed in what is generally called the "prompt emission" in gamma ray bursts (GRBs) do originate in the collision between the accelerated baryonic matter (ABM) pulse with inhomogeneities in the interstellar medium (ISM). The initial phase of such process occurs at a Lorentz factor γ310\gamma\sim 310. The crossing of ISM inhomogeneities of sizes ΔR1015\Delta R\sim 10^{15} cm occurs in a detector arrival time interval of 0.4\sim 0.4 s implying an apparent superluminal behavior of 105c\sim 10^5c. The long lasting debate between the validity of the external shock model vs. the internal shock model for GRBs is solved in favor of the first

    Stellar Energetic Particle Transport in the Turbulent and CME-disrupted Stellar Wind of AU~Microscopii

    Get PDF
    Energetic particles emitted by active stars are likely to propagate in astrospheric magnetized plasma turbulent and disrupted by the prior passage of energetic Coronal Mass Ejections (CMEs). We carried out test-particle simulations of \sim GeV protons produced at a variety of distances from the M1Ve star AU~Microscopii by coronal flares or travelling shocks. Particles are propagated within the large-scale quiescent three-dimensional magnetic field and stellar wind reconstructed from measured magnetograms, and { within the same stellar environment following passage of a 103610^{36}~erg kinetic energy CME}. In both cases, magnetic fluctuations with an isotropic power spectrum are overlayed onto the large scale stellar magnetic field and particle propagation out to the two innnermost confirmed planets is examined. In the quiescent case, the magnetic field concentrates the particles onto two regions near the ecliptic plane. After the passage of the CME, the closed field lines remain inflated and the re-shuffled magnetic field remains highly compressed, shrinking the scattering mean free path of the particles. In the direction of propagation of the CME-lobes the subsequent EP flux is suppressed. Even for a CME front propagating out of the ecliptic plane, the EP flux along the planetary orbits highly fluctuates and peaks at 23\sim 2 -3 orders of magnitude higher than the average solar value at Earth, both in the quiescent and the post-CME cases.Comment: 19 pages, 14 figures, submitte

    New perspectives in physics and astrophysics from the theoretical understanding of Gamma-Ray Bursts

    Get PDF
    If due attention is given in formulating the basic equations for the Gamma-Ray Burst (GRB) phenomenon and in performing the corresponding quantitative analysis, GRBs open a main avenue of inquiring on totally new physical and astrophysical regimes. This program is one of the greatest computational efforts in physics and astrophysics and cannot be actuated using shortcuts. A systematic approach has been highlighted in three paradigms: the relative space-time transformation (RSTT) paradigm, the interpretation of the burst structure (IBS) paradigm, the GRB-supernova time sequence (GSTS) paradigm. In fundamental physics new regimes are explored: (1) the process of energy extraction from black holes; (2) the quantum and general relativistic effects of matter-antimatter creation near the black hole horizon; (3) the physics of ultrarelativisitc shock waves with Lorentz gamma factor γ>100\gamma > 100. In astronomy and astrophysics also new regimes are explored: (i) the occurrence of gravitational collapse to a black hole from a critical mass core of mass M\agt 10M_\odot, which clearly differs from the values of the critical mass encountered in the study of stars ``catalyzed at the endpoint of thermonuclear evolution" (white dwarfs and neutron stars); (ii) the extremely high efficiency of the spherical collapse to a black hole, where almost 99.99% of the core mass collapses leaving negligible remnant; (iii) the necessity of developing a fine tuning in the final phases of thermonuclear evolution of the stars, both for the star collapsing to the black hole and the surrounding ones, in order to explain the possible occurrence of the "induced gravitational collapse". A new class of space missions to acquire information on such extreme new regimes are urgently needed.Comment: RevTeX4, 93 pages, 50 figures, to appear in the "Proceedings of the Xth Brazilian School of Cosmology and Gravitation", M. Novello, editor, AIP, in pres

    Chirality effects on the IRMPD spectra of basket resorcinarene/nucleoside complexes

    Get PDF
    The IRMPD spectra of the ESI-formed proton-bound complexes of the R,R,R,R- and S,S,S,S-enantiomers of a bis(diamido)-bridged basket resorcin[4]arene (R and S) with cytosine (1), cytidine (2), and cytarabine (3) were measured in the region 2800– 3600 cm1. Comparison of the IRMPD spectra with the corresponding ONIOM (B3LYP/6-31(d):UFF)-calculated absorption frequencies allowed the assessment of the vibrational modes that are responsible for the observed spectroscopic features. All of the complexes investigated, apart from [R·H·3]+, showed similar IRMPD spectra, which points to similar structural and conformational landscapes. Their IRMPD spectra agree with the formation of several isomeric structures in the ESI source, wherein the N(3)-protonated guest establishes noncovalent interactions with the host amidocarbonyl groups that are either oriented inside the host cavity or outside it between one of the bridged side-chains and the upper aromatic nucleus. The IRMPD spectrum of the [R·H·3]+ complex was clearly different from the others. This difference is attributed to the effect of intramolecular hydrogen bonding interactions between the C(2’)-OH group and the aglycone oxygen atom of the nucleosidic guest upon repulsive interactions between the same oxygen atom and the aromatic rings of the host

    A New Astrophysical "Triptych": GRB030329/SN2003dh/URCA-2

    Get PDF
    We analyze the data of the Gamma-Ray Burst/Supernova GRB030329/SN2003dh system obtained by HETE-2 (GCN [1]), R-XTE (GCN [2]), XMM (Tiengo et al. [3]) and VLT (Hjorth et al. [4]) within our theory (Ruffini et al. [5] and references therein) for GRB030329. By fitting the only three free parameters of the EMBH theory, we obtain the luminosity in fixed energy bands for the prompt emission and the afterglow (see Fig.1). Since the Gamma-Ray Burst (GRB) analysis is consistent with a spherically symmetric expansion, the energy of GRB030329 is E = 2.1 * 10^{52} erg, namely ~ 2 * 10^3 times larger than the Supernova energy. We conclude that either the GRB is triggering an induced-supernova event or both the GRB and the Supernova are triggered by the same relativistic process. In no way the GRB can be originated from the supernova. We also evidence that the XMM observations (Tiengo et al. [3]), much like in the system GRB980425/SN1998bw (Ruffini et al. [6], Pian et al. [7]), are not part of the GRB afterglow, as interpreted in the literature (Tiengo et al. [3]), but are associated to the Supernova phenomenon. A dedicated campaign of observations is needed to confirm the nature of this XMM source as a newly born neutron star cooling by generalized URCA processes.Comment: 4 pages, 1 figure, to appear in the Proceedings of the Los Alamos "Gamma Ray Burst Symposium" in Santa Fe, New Mexico, September 8-12 2003 (AIP Conf. Ser.), CHAPTER: GRB03032

    Stellar energetic particles in the magnetically turbulent habitable zones of TRAPPIST-1-like planetary systems

    Get PDF
    Planets in close proximity to their parent star, such as those in the habitable zones around M dwarfs, could be subject to particularly high doses of particle radiation. We have carried out test-particle simulations of ~GeV protons to investigate the propagation of energetic particles accelerated by flares or travelling shock waves within the stellar wind and magnetic field of a TRAPPIST-1-like system. Turbulence was simulated with small-scale magnetostatic perturbations with an isotropic power spectrum. We find that only a few percent of particles injected within half a stellar radius from the stellar surface escape, and that the escaping fraction increases strongly with increasing injection radius. Escaping particles are increasingly deflected and focused by the ambient spiralling magnetic field as the superimposed turbulence amplitude is increased. In our TRAPPIST-1-like simulations, regardless of the angular region of injection, particles are strongly focused onto two caps within the fast wind regions and centered on the equatorial planetary orbital plane. Based on a scaling relation between far-UV emission and energetic protons for solar flares applied to M dwarfs, the innermost putative habitable planet, TRAPPIST-1e, is bombarded by a proton flux up to 6 orders of magnitude larger than experienced by the present-day Earth. We note two mechanisms that could strongly limit EP fluxes from active stars: EPs from flares are contained by the stellar magnetic field; and potential CMEs that might generate EPs at larger distances also fail to escape.Comment: 17 pages, 12 figures, ApJ in pres
    corecore