212 research outputs found

    Entanglement Spectra of Interacting Fermions in Quantum Monte Carlo Simulations

    Full text link
    In a recent article T. Grover [Phys. Rev. Lett. 111, 130402 (2013)] introduced a simple method to compute Renyi entanglement entropies in the realm of the auxiliary field quantum Monte Carlo algorithm. Here, we further develop this approach and provide a stabilization scheme to compute higher order Renyi entropies and an extension to access the entanglement spectrum. The method is tested on systems of correlated topological insulators.Comment: 7+ pages, 5 figure

    Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

    Full text link
    We study spinless fermions with nearest-neighbor repulsive interactions (tt-VV model) on the two-dimensional three-band Lieb lattice. At half-filling, the free electronic band structure consists of a flat band at zero energy and a single cone with linear dispersion. The flat band is expected to be unstable upon inclusion of electronic correlations, and a natural channel is charge order. However, due to the three-orbital unit cell, commensurate charge order implies an imbalance of electron and hole densities and therefore doping away from half-filling. Our numerical results show that below a finite-temperature Ising transition a charge density wave with one electron and two holes per unit cell and its partner under particle-hole transformation are spontaneously generated. Our calculations are based on recent advances in auxiliary-field and continuous-time quantum Monte Carlo simulations that allow sign-free simulations of spinless fermions at half-filling. It is argued that particle-hole symmetry breaking provides a route to access levels of finite doping, without introducing a sign problem.Comment: 9 pages, 6 figures, added data for strong Coulomb repulsion and classical Ising-limi

    Dimerized Solids and Resonating Plaquette Order in SU(N)-Dirac Fermions

    Full text link
    We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half-filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the semimetal and an antiferromagnetic insulator.Comment: 5 pages, 6 figure

    Exact diagonalization study of the tunable edge magnetism in graphene

    Full text link
    The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing graphene zigzag edge states with a ferromagnetic phase, to a limit equivalent to a Hubbard chain, which does not allow ferromagnetism. This analysis sheds light onto the question why the edge states have a ferromagnetic ground state, while a usual one-dimensional metal does not. Essentially we find that there are two important features of edge states: (a) umklapp processes are completely forbidden for edge states; this allows a spin-polarized ground state. (b) the strong momentum dependence of the effective interaction vertex for edge states gives rise to a regime of partial spin-polarization and a second order phase transition between a standard paramagnetic Luttinger liquid and ferromagnetic Luttinger liquid.Comment: 11 pages, 8 figure

    Dynamical Signatures of Edge-State Magnetism on Graphene Nanoribbons

    Full text link
    We investigate the edge-state magnetism of graphene nanoribbons using projective quantum Monte Carlo simulations and a self-consistent mean-field approximation of the Hubbard model. The static magnetic correlations are found to be short ranged. Nevertheless, the correlation length increases with the width of the ribbon such that already for ribbons of moderate widths we observe a strong trend towards mean-field-type ferromagnetic correlations at a zigzag edge. These correlations are accompanied by a dominant low-energy peak in the local spectral function and we propose that this can be used to detect edge-state magnetism by scanning tunneling microscopy. The dynamic spin structure factor at the edge of a ribbon exhibits an approximately linearly dispersing collective magnonlike mode at low energies that decays into Stoner modes beyond the energy scale where it merges into the particle-hole continuum.Comment: 4+ pages including 4 figure

    Periodic Anderson model with electron-phonon correlated conduction band

    Get PDF
    This paper reports dynamical mean field calculations for the periodic Anderson model in which the conduction band is coupled to phonons. Motivated in part by recent attention to the role of phonons in the γ\gamma-α\alpha transition in Ce, this model yields a rich and unexpected phase diagram which is of intrinsic interest. Specifically, above a critical value of the electron-phonon interaction, a first order transition with two coexisting phases develops in the temperature-hybridization plane, which terminates at a second order critical point. The coexisting phases display the familiar Kondo screened and local moment character, yet they also exhibit pronounced polaronic and bipolaronic properties, respectively.Comment: 4 pages, 6 figure

    Antiferromagnetism in the Hubbard Model on the Bernal-stacked Honeycomb Bilayer

    Full text link
    Using a combination of quantum Monte Carlo simulations, functional renormalization group calculations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers an antiferromagnetic instability that spontaneously breaks sublattice and spin rotational symmetry once local Coulomb repulsions are introduced. Our results reveal an inhomogeneous participation of the spin moments in the ordered ground state, with enhanced moments at the three-fold coordinated sites. Furthermore, we find the antiferromagnetic ground state to be robust with respect to enhanced interlayer couplings and extended Coulomb interactions.Comment: 4+ pages, 4 figures; final versio

    ОБОСНОВАНИЕ МЕТОДОВ РАСЧЕТОВ ПАРАМЕТРОВ ГИДРОТРАНСПОРТА ВыСОКОКОНЦЕНТРИРОВАННыХ ГИДРОСМЕСЕЙ

    No full text
    Днепропетровская область – крупный промышленный регион, в котором сосредоточены предприятия металлургической, химической и машинострои-тельной отраслей промышленности, расположенный на пересечении водных путей, железнодорожных и автомобильных магистралей, направленных к ме-сторождениям каменных углей и железной руды. Металлургические заводы, коксохимические комбинаты и тепловые электростанции являются крупней-шими потребителями воды, основного экологического ресурса планеты, а также основными источниками загрязнения водного бассейна региона. Несмотря на использование на таких предприятиях замкнутых циклов водоснабжения, про-блема аккумулирования жидких отходов остается для них актуальной и острой. Особенно актуальным это является для горно-обогатительных комбинатов (ГОК) Кривбасса, большая часть которых заканчивает эксплуатацию хранилищ отходов, построенных в 60-70 годы прошлого столетия. Дальнейшее развитие региона во многом определяется промышленным потенциалом этих предпри-ятий, поскольку они, с одной стороны, являются потребителями угля, железной руды и прочих ресурсов, чем обеспечивают работоспособность отечественных предприятий, а с другой стороны, выпускают продукцию, потребителями кото-рой являются многие предприятия страны

    Single hole dynamics in the t-J model on a square lattice

    Full text link
    We present quantum Monte Carlo (QMC) simulations for a single hole in a t-J model from J=0.4t to J=4t on square lattices with up to 24 x 24 sites. The lower edge of the spectrum is directly extracted from the imaginary time Green's function. In agreement with earlier calculations, we find flat bands around (0,±π)(0,\pm\pi), (±π,0)(\pm\pi,0) and the minimum of the dispersion at (±π/2,±π/2)(\pm\pi/2,\pm\pi/2). For small J both self-consistent Born approximation and series expansions give a bandwidth for the lower edge of the spectrum in agreement with the simulations, whereas for J/t > 1, only series expansions agree quantitatively with our QMC results. This band corresponds to a coherent quasiparticle. This is shown by a finite size scaling of the quasiparticle weight Z(k)Z(\vec k) that leads to a finite result in the thermodynamic limit for the considered values of J/tJ/t. The spectral function A(k,ω)A(\vec k, \omega) is obtained from the imaginary time Green's function via the maximum entropy method. Resonances above the lowest edge of the spectrum are identified, whose J-dependence is quantitatively described by string excitations up to J/t=2

    Critical Role of IRF-5 in the Development of T helper 1 responses to Leishmania donovani infection

    Get PDF
    The transcription factor Interferon Regulatory Factor 5 (IRF-5) has been shown to be involved in the induction of proinflammatory cytokines in response to viral infections and TLR activation and to play an essential role in the innate inflammatory response. In this study, we used the experimental model of visceral leishmaniasis to investigate the role of IRF-5 in the generation of Th1 responses and in the formation of Th1-type liver granulomas in Leishmania donovani infected mice. We show that TLR7-mediated activation of IRF-5 is essential for the development of Th1 responses to L. donovani in the spleen during chronic infection. We also demonstrate that IRF-5 deficiency leads to the incapacity to control L. donovani infection in the liver and to the formation of smaller granulomas. Granulomas in Irf5-/- mice are characterized by an increased IL-4 and IL-10 response and concomitant low iNOS expression. Collectively, these results identify IRF-5 as a critical molecular switch for the development of Th1 immune responses following L. donovani infections and reveal an indirect role of IRF-5 in the regulation of iNOS expression
    corecore