180 research outputs found

    Feminist geographies of digital work

    Get PDF
    Feminist thought challenges essentialist and normative categorizations of ‘work’. Therefore, feminism provides a critical lens on ‘working space’ as a theoretical and empirical focus for digital geographies. Digital technologies extend and intensify working activity, rendering the boundaries of the workplace emergent. Such emergence heightens the ambivalence of working experience: the possibilities for affirmation and/or negation through work. A digital geography is put forward through feminist theorizations of the ambivalence of intimacy. The emergent properties of working with digital technologies create space through the intimacies of postwork places where bodies and machines feel the possibilities of being ‘at’ work

    Versatile tape-drive target for high-repetition rate laser-driven proton acceleration

    Get PDF
    We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( >kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources

    Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study

    Get PDF
    Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans

    The what and why of perceptual asymmetries in the visual domain

    Get PDF
    Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; and in terms of underlying mechanisms, the why of the asymmetries. Tthe within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. between-visual field asymmetries have been reported for a wide range of perceptual phenomena. foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds true for object or face recognition and reading performance. upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. Iin contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, the primary why, but can be also susceptible to visual experience, the critical why (promotes or blocks the asymmetries by altering neural functions)

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources

    Automated control and optimisation of laser driven ion acceleration

    Get PDF
    The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation. Here, an automated, HRR-compatible system produced high fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources

    Medium-size-vessel vasculitis

    Get PDF
    Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder disease characterised by periodic exacerbations and often associated with streptococcal infection. There is controversy as to whether this is a separate entity or part of the systemic PAN spectrum. Kawasaki disease is an acute self-limiting systemic vasculitis, the second commonest vasculitis in childhood and the commonest cause of childhood-acquired heart disease. Renal manifestations occur and include tubulointerstitial nephritis and renal failure. An infectious trigger and a genetic predisposition seem likely. Intravenous immunoglobulin (IV-Ig) and aspirin are effective therapeutically, but in resistant cases, either steroid or infliximab have a role. Greater understanding of the pathogenetic mechanisms involved in these three types of vasculitis and better long-term follow-up data will lead to improved therapy and prediction of prognosis

    Suicide risk in schizophrenia: learning from the past to change the future

    Get PDF
    Suicide is a major cause of death among patients with schizophrenia. Research indicates that at least 5–13% of schizophrenic patients die by suicide, and it is likely that the higher end of range is the most accurate estimate. There is almost total agreement that the schizophrenic patient who is more likely to commit suicide is young, male, white and never married, with good premorbid function, post-psychotic depression and a history of substance abuse and suicide attempts. Hopelessness, social isolation, hospitalization, deteriorating health after a high level of premorbid functioning, recent loss or rejection, limited external support, and family stress or instability are risk factors for suicide in patients with schizophrenia. Suicidal schizophrenics usually fear further mental deterioration, and they experience either excessive treatment dependence or loss of faith in treatment. Awareness of illness has been reported as a major issue among suicidal schizophrenic patients, yet some researchers argue that insight into the illness does not increase suicide risk. Protective factors play also an important role in assessing suicide risk and should also be carefully evaluated. The neurobiological perspective offers a new approach for understanding self-destructive behavior among patients with schizophrenia and may improve the accuracy of screening schizophrenics for suicide. Although, there is general consensus on the risk factors, accurate knowledge as well as early recognition of patients at risk is still lacking in everyday clinical practice. Better knowledge may help clinicians and caretakers to implement preventive measures. This review paper is the results of a joint effort between researchers in the field of suicide in schizophrenia. Each expert provided a brief essay on one specific aspect of the problem. This is the first attempt to present a consensus report as well as the development of a set of guidelines for reducing suicide risk among schizophenia patients

    A review of bioanalytical techniques for evaluation of cannabis (Marijuana, weed, Hashish) in human hair

    Get PDF
    Cannabis products (marijuana, weed, hashish) are among the most widely abused psychoactive drugs in the world, due to their euphorigenic and anxiolytic properties. Recently, hair analysis is of great interest in analytical, clinical, and forensic sciences due to its non-invasiveness, negligible risk of infection and tampering, facile storage, and a wider window of detection. Hair analysis is now widely accepted as evidence in courts around the world. Hair analysis is very feasible to complement saliva, blood tests, and urinalysis. In this review, we have focused on state of the art in hair analysis of cannabis with particular attention to hair sample preparation for cannabis analysis involving pulverization, extraction and screening techniques followed by confirmatory tests (e.g., GC–MS and LC–MS/MS). We have reviewed the literature for the past 10 years’ period with special emphasis on cannabis quantification using mass spectrometry. The pros and cons of all the published methods have also been discussed along with the prospective future of cannabis analysis
    corecore