6,729 research outputs found

    Brain awareness week and beyond: encouraging the next generation.

    Get PDF
    The field of neuroscience is generating increased public appetite for information about exciting brain research and discoveries. As stewards of the discipline, together with FUN and others, the Society for Neuroscience (SfN) embraces public outreach and education as essential to its mission of promoting understanding of the brain and nervous system. The Society looks to its members, particularly the younger generation of neuroscientists, to inspire, inform and engage citizens of all ages, and most importantly our youth, in this important endeavor. Here we review SfN programs and resources that support public outreach efforts to inform, educate and tell the story of neuroscience. We describe the important role the Brain Awareness campaign has played in achieving this goal and highlight opportunities for FUN members and students to contribute to this growing effort. We discuss specific programs that provide additional opportunities for neuroscientists to get involved with K-12 teachers and students in ways that inspire youth to pursue further studies and possible careers in science. We draw attention to SfN resources that support outreach to broader audiences. Through ongoing partnerships such as that between SfN and FUN, the neuroscience community is well positioned to pursue novel approaches and resources, including harnessing the power of the Internet. These efforts will increase science literacy among our citizens and garner more robust support for scientific research

    Corner Junction as a Probe of Helical Edge States

    Full text link
    We propose and analyze inter-edge tunneling in a quantum spin Hall corner junction as a means to probe the helical nature of the edge states. We show that electron-electron interactions in the one-dimensional helical edge states result in Luttinger parameters for spin and charge that are intertwined, and thus rather different than those for a quantum wire with spin rotation invariance. Consequently, we find that the four-terminal conductance in a corner junction has a distinctive form that could be used as evidence for the helical nature of the edge states.Comment: 4+ pages, 3 figure

    Effect of Rossby and Alfv\'{e}n waves on the dynamics of the tachocline

    Get PDF
    To understand magnetic diffusion, momentum transport, and mixing in the interior of the sun, we consider an idealized model of the tachocline, namely magnetohydrodynamics (MHD) turbulence on a β\beta plane subject to a large scale shear (provided by the latitudinal differential rotation). This model enables us to self-consistently derive the influence of shear, Rossby and Alfv\'{e}n waves on the transport properties of turbulence. In the strong magnetic field regime, we find that the turbulent viscosity and diffusivity are reduced by magnetic fields only, similarly to the two-dimensional MHD case (without Rossby waves). In the weak magnetic field regime, we find a crossover scale (L_RL\_R) from a Alfv\'{e}n dominated regime (on small scales) to a Rossby dominated regime (on large scales). For parameter values typical of the tachocline, L_RL\_R is larger that the solar radius so that Rossby waves are unlikely to play an important role in the transport of magnetic field and angular momentum. This is mainly due to the enhancement of magnetic back-reaction by shearing which efficiently generates small scales, thus strong currents

    Premature Judicial Termination of Non-Spendthrift Trusts: Reconciling a Dead Settlor\u27s Intent with a Living Beneficiary\u27s Needs

    Get PDF
    Section I of this comment examines the historical background of the Claflin doctrine. Section II discusses Texas cases applying the Claflin doctrine. Section III critically analyzes Section 112.054 which restricts premature trust termination. Section IV proposes adopting an amendment to the Texas Property Code to permit premature judicial termination of a non-spendthrift trust if all beneficiaries are sui juris and consent

    Maximizing total job value on a single machine with job selection

    Get PDF
    This paper describes a single machine scheduling problem of maximizing total job value with a machine availability constraint. The value of each job decreases over time in a stepwise fashion. Several solution properties of the problem are developed. Based on the properties, a branch-and-bound algorithm and a heuristic algorithm are derived. These algorithms are evaluated in the computational study and the results show that the heuristic algorithm provides effective solutions within short computation times

    Principal factors that determine the extension of detection range in molecular beacon aptamer/conjugated polyelectrolyte bioassays.

    Get PDF
    A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity
    corecore