229 research outputs found

    Unusual manifestations of secondary urothelial carcinoma

    Get PDF
    AbstractHigh-grade papillary urothelial carcinoma regularly invades the bladder wall, adjacent prostate, seminal vesicles, ureters, vagina, rectum, retroperitoneum, and regional lymph nodes. In advanced stages, it may disseminate to the liver, lungs, and bone marrow. On rare occasions, unusual metastatic foci like skin have been reported. The incidence of urothelial carcinoma has increased with associated rise in variants of urothelial carcinoma and unusual metastatic foci. It is imperative that urologists and pathologists are aware of the unusual variants and unusual metastatic locations to expedite the diagnostic process. Hereby we report an unusual case of secondary involvement of spinal nerve by conventional urothelial carcinoma. Also a second case of rhabdoid variant of urothelial carcinoma showing synchronous involvement of bladder and subcutaneous tissue of upper extremity is presented

    Modelling of the regulation of the hilA promoter of type three secretion system of Salmonella enterica serovar Typhimurium

    Get PDF
    One of the most common modes of secretion of toxins in gram-negative bacteria is via the type three secretion system (TTSS), which enables the toxins to be specifically exported into the host cell. The hilA gene product is a key regulator of the expression of the TTSS located on the pathogenicity island (SPI-1) of Salmonella enterica serovar Typhimurium. It has been proposed earlier that the regulation of HilA expression is via a complex feedforward loop involving the transactivators HilD, HilC and RtsA. In this paper, we have constructed a mathematical model of regulation of hilA-promoter by all the three activators using two feedforward loops. We have modified the model to include additional complexities in regulation such as the proposed positive feedback and cross regulations of the three transactivators. Results of the various models indicate that the basic model involving two Type I coherent feedforward loops with an OR gate is sufficient to explain the published experimental observations. We also discuss two scenarios where the regulation can occur via monomers or heterodimers of the transactivators and propose experiments that can be performed to distinguish the two modes of regulator function

    Crosstalk between Virulence Loci: Regulation of Salmonella enterica Pathogenicity Island 1 (SPI-1) by Products of the std Fimbrial Operon

    Get PDF
    Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam− background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam+ background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam− mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed

    The Flagellar Regulator fliT Represses Salmonella Pathogenicity Island 1 through flhDC and fliZ

    Get PDF
    Salmonella pathogenicity island 1 (SPI1), comprising a type III section system that translocates effector proteins into host cells, is essential for the enteric pathogen Salmonella to penetrate the intestinal epithelium and subsequently to cause disease. Using random transposon mutagenesis, we found that a Tn10 disruption in the flagellar fliDST operon induced SPI1 expression when the strain was grown under conditions designed to repress SPI1, by mimicking the environment of the large intestine through the use of the intestinal fatty acid butyrate. Our genetic studies showed that only fliT within this operon was required for this effect, and that exogenous over-expression of fliT alone significantly reduced the expression of SPI1 genes, including the invasion regulator hilA and the sipBCDA operon, encoding type III section system effector proteins, and Salmonella invasion of cultured epithelial cells. fliT has been known to inhibit the flagellar machinery through repression of the flagellar master regulator flhDC. We found that the repressive effect of fliT on invasion genes was completely abolished in the absence of flhDC or fliZ, the latter previously shown to induce SPI1, indicating that this regulatory pathway is required for invasion control by fliT. Although this flhDC-fliZ pathway was necessary for fliT to negatively control invasion genes, fliZ was not essential for the repressive effect of fliT on motility, placing fliT high in the regulatory cascade for both invasion and motility

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    Evaluating a model of global psychophysical judgments for brightness: II. Behavioral properties linking summations and productions

    Get PDF
    Steingrimsson (Attention, Perception, & Psychophysics, 71, 1916–1930, 2009) outlined Luce’s (Psychological Review, 109, 520–532 2002, 111, 446–454 2004) proposed psychophysical theory and tested, for brightness, behavioral properties that, separately, gave rise to two psychophysical functions, Ψ⊕ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψp {\Psi_{{ \circ_p}}} \end{document}. The function Ψ⊕ maps pairs of physical intensities onto positive real numbers and represents subjective summation, and the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψp {\Psi_{{ \circ_p}}} \end{document} represents a form of ratio production. This article, the second in a series expected to consist of three articles, tests the properties linking summation and production such that it forces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψp=Ψ=Ψ {\Psi_{{ \circ_p}}} = {\Psi_\oplus } = \Psi \end{document}. The properties tested are a form of distributivity and, in three experiments, were subjected to an empirical evaluation. Considerable support is provided for the existence of a single function Ψ for both summation and ratio production. The scope of this series of articles is to establish the theory as a descriptive model of binocular brightness perception

    The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1

    Get PDF
    Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1+ phenotype) or not (TTSS-1− phenotype). Here, we studied in vitro the TTSS-1+ phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1+ phenotype grew slower than cells of the TTSS-1− phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1+ subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1− cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype

    Characterization of MgtC, a Virulence Factor of Salmonella enterica Serovar Typhi

    Get PDF
    The MgtC is a virulence factor in Salmonella Typhimurium that is required for growth at low-Mg2+ concentrations and intramacrophage survival. This gene is codified in a conserved region of the Salmonella pathogenicity island 3 (SPI-3), and is also present in the chromosome of other Salmonella serovars. In this study we characterized the MgtC factor in S. Typhi, a human specific pathogen, by using mgtC and SPI-3 mutant strains. We found that MgtC is the most important factor codified in the SPI-3 of S. Typhi for growth in low-Mg2+ media and survival within human cells. In addition, by using reporter genes we determined that the low-Mg2+ concentration, acidic media and PhoP regulator induce mgtC expression in S. Typhi. We suggest that MgtC is the most important virulence factor codified in the SPI-3 of S. Typhi

    6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs

    Get PDF
    Salmonella enterica serovar Typhimurium is an animal and zoonotic pathogen of worldwide importance. In pigs, transport and social stress are associated with reactivation and spread of Salmonella Typhimurium infection. The stress-related catecholamine norepinephrine (NE) has been reported to activate growth and virulence factor expression in Salmonella; however the extent to which NE contributes to stress-associated salmonellosis is unclear. We studied the impact of releasing NE from endogenous stores during Salmonella Typhimurium infection of pigs by administration of 6-hydroxydopamine (6-OHDA), which selectively destroys noradrenergic nerve terminals. Treatment of pigs with 6-OHDA 7 or 16 days post-oral inoculation with Salmonella Typhimurium produced elevated plasma NE levels and transiently, but significantly, increased faecal excretion of the challenge strain. Oral administration of NE to Salmonella Typhimurium-infected pigs also transiently and significantly increased shedding; however pre-culture of the bacteria with NE did not alter the outcome of infection. Salmonella has been proposed to sense and respond to NE via a homologue of the adrenergic sensor kinase QseC. A ΔqseC mutant of Salmonella Typhimurium was consistently excreted in lower numbers than the parent strain post-oral inoculation of pigs, though not significantly so. 6-OHDA treatment of pigs infected with the ΔqseC mutant also increased faecal excretion of the mutant strain, albeit to a lesser extent than observed upon 6-OHDA treatment of pigs infected with the parent strain. Our data support the notion that stress-related catecholamines modulate the interaction of enteric bacterial pathogens with their hosts
    corecore