555 research outputs found
Interoceptive robustness through environment-mediated morphological development
Typically, AI researchers and roboticists try to realize intelligent behavior
in machines by tuning parameters of a predefined structure (body plan and/or
neural network architecture) using evolutionary or learning algorithms. Another
but not unrelated longstanding property of these systems is their brittleness
to slight aberrations, as highlighted by the growing deep learning literature
on adversarial examples. Here we show robustness can be achieved by evolving
the geometry of soft robots, their control systems, and how their material
properties develop in response to one particular interoceptive stimulus
(engineering stress) during their lifetimes. By doing so we realized robots
that were equally fit but more robust to extreme material defects (such as
might occur during fabrication or by damage thereafter) than robots that did
not develop during their lifetimes, or developed in response to a different
interoceptive stimulus (pressure). This suggests that the interplay between
changes in the containing systems of agents (body plan and/or neural
architecture) at different temporal scales (evolutionary and developmental)
along different modalities (geometry, material properties, synaptic weights)
and in response to different signals (interoceptive and external perception)
all dictate those agents' abilities to evolve or learn capable and robust
strategies
Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities
The availability of asteroseismic constraints for a large sample of stars
from the missions CoRoT and Kepler paves the way for various statistical
studies of the seismic properties of stellar populations. In this paper, we
evaluate the impact of rotation-induced mixing and thermohaline instability on
the global asteroseismic parameters at different stages of the stellar
evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic
Giant Branch to distinguish stellar populations. We present a grid of stellar
evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and
0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed
either with standard prescriptions or including both thermohaline convection
and rotation-induced mixing. For the whole grid we provide the usual stellar
parameters (luminosity, effective temperature, lifetimes, ...), together with
the global seismic parameters, i.e. the large frequency separation and
asymptotic relations, the frequency corresponding to the maximum oscillation
power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing
of g-modes, and different acoustic radii. We discuss the signature of
rotation-induced mixing on the global asteroseismic quantities, that can be
detected observationally. Thermohaline mixing whose effects can be identified
by spectroscopic studies cannot be caracterized with the global seismic
parameters studied here. But it is not excluded that individual mode
frequencies or other well chosen asteroseismic quantities might help
constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&
A search for solar-like oscillations in the Am star HD 209625
The goal is to test the structure of hot metallic stars, and in particular
the structure of a near-surface convection zone using asteroseismic
measurements. Indeed, stellar models including a detailed treatement of the
radiative diffusion predict the existence of a near-surface convection zone in
order to correctly reproduce the anomalies in surface abundances that are
observed in Am stars. The Am star HD 209625 was observed with the Harps
spectrograph mounted on the 3.6-m telescope at the ESO La Silla Observatory
(Chile) during 9 nights in August 2005. This observing run allowed us to
collect 1243 radial velocity (RV) measurements, with a standard deviation of
1.35 m/s. The power spectrum associated with these RV measurements does not
present any excess. Therefore, either the structure of the external layers of
this star does not allow excitation of solar-like oscillations, or the
amplitudes of the oscillations remain below 20-30 cm/s (depending on their
frequency range).Comment: 5 pages, 4 figures, A&A accepte
Stellar mass and age determinations - I. Grids of stellar models from Z=0.006 to 0.04 and M=0.5 to 3.5 Msun
We present dense grids of stellar models suitable for comparison with
observable quantities measured with great precision, such as those derived from
binary systems or planet-hosting stars. We computed new Geneva models without
rotation at metallicities Z=0.006, 0.01, 0.014, 0.02, 0.03 and 0.04 (i.e.
[Fe/H] from -0.33 to +0.54) and with mass in small steps from 0.5 to 3.5 Msun.
Great care was taken in the procedure for interpolating between tracks in order
to compute isochrones. Several properties of our grids are presented as a
function of stellar mass and metallicity. Those include surface properties in
the Hertzsprung-Russell diagram, internal properties including mean stellar
density, sizes of the convective cores, and global asteroseismic properties. We
checked our interpolation procedure and compared interpolated tracks with
computed tracks. The deviations are less than 1% in radius and effective
temperatures for most of the cases considered. We also checked that the present
isochrones provide nice fits to four couples of observed detached binaries and
to the observed sequences of the open clusters NGC 3532 and M67. Including
atomic diffusion in our models with M<1.1 Msun leads to variations in the
surface abundances that should be taken into account when comparing with
observational data of stars with measured metallicities. For that purpose,
iso-Zsurf lines are computed. These can be requested for download from a
dedicated web page together with tracks at masses and metallicities within the
limits covered by the grids. The validity of the relations linking Z and FeH is
also re-assessed in light of the surface abundance variations in low-mass
stars.Comment: Accepted for publication in A&
Physics of massive stars relevant for the modeling of Wolf-Rayet populations
Key physical ingredients governing the evolution of massive stars are mass
losses, convection and mixing in radiative zones. These effects are important
both in the frame of single and close binary evolution. The present paper
addresses two points: 1) the differences between two families of rotating
models, i.e. the family of models computed with and without an efficient
transport of angular momentum in radiative zones; 2) The impact of the mass
losses in single and in close binary models.Comment: 5 pages, 4 figures, to appear in the proceedings of the international
Wolf-Rayet stars workshop held in Potsdam (2015
The impact of mass-loss on the evolution and pre-supernova properties of red supergiants
The post main-sequence evolution of massive stars is very sensitive to many
parameters of the stellar models. Key parameters are the mixing processes, the
metallicity, the mass-loss rate and the effect of a close companion. We study
how the red supergiant lifetimes, the tracks in the Hertzsprung-Russel diagram
(HRD), the positions in this diagram of the pre-supernova progenitor as well as
the structure of the stars at that time change for various mass-loss rates
during the red supergiant phase (RSG), and for two different initial rotation
velocities. The surface abundances of RSGs are much more sensitive to rotation
than to the mass-loss rates during that phase. A change of the RSG mass-loss
rate has a strong impact on the RSG lifetimes and therefore on the luminosity
function of RSGs. At solar metallicity, the enhanced mass-loss rate models do
produce significant changes on the populations of blue, yellow and red
supergiants. When extended blue loops or blue ward excursions are produced by
enhanced mass-loss, the models predict that a majority of blue (yellow)
supergiants are post RSG objects. These post RSG stars are predicted to show
much smaller surface rotational velocities than similar blue supergiants on
their first crossing of the HR gap. The position in the HRD of the end point of
the evolution depends on the mass of the hydrogen envelope. More precisely,
whenever, at the pre-supernova stage, the H-rich envelope contains more than
about 5\% of the initial mass, the star is a red supergiant, and whenever the
H-rich envelope contains less than 1\% of the total mass the star is a blue
supergiant. For intermediate situations, intermediate colors/effective
temperatures are obtained. Yellow progenitors for core collapse supernovae can
be explained by the enhanced mass-loss rate models, while the red progenitors
are better fitted by the standard mass-loss rate models.Comment: 19 pages, 11 figures, 6 tables, accepted for publication in Astronomy
and Astrophysic
Revisiting Kepler-444. II. Rotational, orbital and high-energy fluxes evolution of the system
Context. Kepler-444 is one of the oldest planetary systems known thus far.
Its peculiar configuration consisting of five sub-Earth-sized planets orbiting
the companion to a binary stellar system makes its early history puzzling.
Moreover, observations of HI-Ly- variations raise many questions
about the potential presence of escaping atmospheres today. Aims. We aim to
study the orbital evolution of Kepler-444-d and Kepler-444-e and the impact of
atmospheric evaporation on Kepler-444-e. Methods. Rotating stellar models of
Kepler-444-A were computed with the Geneva stellar evolution code and coupled
to an orbital evolution code, accounting for the effects of dynamical,
equilibrium tides and atmospheric evaporation. The impacts of multiple stellar
rotational histories and extreme ultraviolet (XUV) luminosity evolutionary
tracks are explored. Results. Using detailed rotating stellar models able to
reproduce the rotation rate of Kepler-444-A, we find that its observed rotation
rate is perfectly in line with what is expected for this old K0-type star,
indicating that there is no reason for it to be exceptionally active as would
be required to explain the observed HI-Ly- variations from a
stellar origin. We show that given the low planetary mass ( 0.03 M) and relatively large orbital distance ( 0.06 AU) of
Kepler-444-d and e, dynamical tides negligibly affect their orbits, regardless
of the stellar rotational history considered. We point out instead how
remarkable the impact is of the stellar rotational history on the estimation of
the lifetime mass loss for Kepler-444-e. We show that, even in the case of an
extremely slow rotating star, it seems unlikely that such a planet could retain
a fraction of the initial water-ice content if we assume that it formed with a
Ganymede-like composition
Constraints on planetary tidal dissipation from a detailed study of Kepler 91b
Context. With the detection of thousands of exoplanets, characterising their
dynamical evolution in detail represents a key step in the understanding of
their formation. Studying the dissipation of tides occurring both in the host
star and in the planets is of great relevance in order to investigate the
distribution of the angular momentum occurring among the objects populating the
system and to studying the evolution of the orbital parameters. From a
theoretical point of view, the dissipation of tides throughout a body may be
studied by relying on the so-called phase or time-lag equilibrium tides model
in which the reduced tidal quality factor Q'p, or equivalently the product
between the love number and the time lag (k2DeltaT), describe how efficiently
tides are dissipated within the perturbed body. Constraining these factors by
looking at the current configuration of the exoplanetary system is extremely
challenging, and simulations accounting for the evolution of the system as a
whole might help to shed some light on the mechanisms governing this process.
Aims. We aim to constrain the tidal dissipation factors of hot-Jupiter-like
planets by studying the orbital evolution of Kepler-91b. Methods. We firstly
carried out a detailed asteroseismc characterisation of Kepler-91 and computed
a dedicated stellar model using both classical and astereoseismic constraints.
We then coupled the evolution of the star to the one of the planets by means of
our orbital evolution code and studied the evolution of the system by
accounting for tides dissipated both in the planet and in the host star.
Results. We found that the maximum value for k2DeltaT (or equivalently the
minimum value for Q'p) determining the efficiency of equilibrium tides
dissipation occurring within Kepler-91b is 0.4 pm 0.25 s (4.5+5.8 * 10^5).Comment: accepted for publication in Astronomy & Astrophysic
Close binary evolution. III. Impact of tides, wind magnetic braking, and internal angular momentum transport
Massive stars with solar metallicity lose important amounts of rotational
angular momentum through their winds. When a magnetic field is present at the
surface of a star, efficient angular momentum losses can still be achieved even
when the mass-loss rate is very modest, at lower metallicities, or for
lower-initial-mass stars. In a close binary system, the effect of wind magnetic
braking also interacts with the influence of tides, resulting in a complex
evolution of rotation. We study the interactions between the process of wind
magnetic braking and tides in close binary systems. We discuss the evolution of
a 10 M star in a close binary system with a 7 M companion using
the Geneva stellar evolution code. The initial orbital period is 1.2 days. The
10 M star has a surface magnetic field of 1 kG. Various initial
rotations are considered. We use two different approaches for the internal
angular momentum transport. In one of them, angular momentum is transported by
shear and meridional currents. In the other, a strong internal magnetic field
imposes nearly perfect solid-body rotation. The evolution of the primary is
computed until the first mass-transfer episode occurs. The cases of different
values for the magnetic fields and for various orbital periods and mass ratios
are briefly discussed. We show that, independently of the initial rotation rate
of the primary and the efficiency of the internal angular momentum transport,
the surface rotation of the primary will converge, in a time that is short with
respect to the main-sequence lifetime, towards a slowly evolving velocity that
is different from the synchronization velocity. (abridged).Comment: 11 pages, 13 figures, accepted for publication in Astronomy and
Astrophysic
- …